Author
Abstract
Post-anthesis heat shocks, which are expected to increase in frequency under climate change, may affect wheat grain development and lead to significant decreases in grain yield. Grain development occurs in three phases, the lag-phase, the filling-phase, and maturation. The growth of the three main compartments of the grain (outer layers (OLs), endosperm, embryo) is staggered, so that heat shocks affect time- and tissue-specific growth processes differentially depending on their timing. We hypothesized that heat shocks during the lag-phase may reduce final grain size, resulting from a reduction in endosperm cell number and/or a restricted OLs growth. Plants were heated for four consecutive days during the lag-phase or the filling-phase or both phases (lag- and filling-). Heat shocks consisted in four hours a day at 38°C and 21°C for the rest of the day. Controlled plants were maintained at 21/14°C (day/night). For each temperature treatment, kinetics of whole grain and compartment masses and dimensions were measured as well as the endosperm cell number. An early heat shock reduced endosperm cell proliferation. However, the growth patterns neither of endosperm nor of OLs were modified compared to controls, resulting in no differences in final grain size. Furthermore, compared to controls, a single heat shock during the filling-phase reduced both the duration and rate of dry mass accumulation into grains, whereas two consecutive shocks reduced the duration but enhanced the rate of dry mass of accumulation, even when endosperm cell number was reduced. The mean endosperm cell size was shown to be larger after early heat shocks. All together, these results suggest a compensatory mechanism exists to regulate endosperm cell size and number. This process might be a new mechanistic target for molecular studies and would improve our understanding of post-anthesis wheat tolerance to heat-shocks.
Suggested Citation
Christine Girousse, 2023.
"Heat shock exposure during early wheat grain development can reduce maximum endosperm cell number but not necessarily final grain dry mass,"
PLOS ONE, Public Library of Science, vol. 18(4), pages 1-26, April.
Handle:
RePEc:plo:pone00:0285218
DOI: 10.1371/journal.pone.0285218
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0285218. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.