Author
Listed:
- Bing Hao
- Jianshuo Zhao
- He Du
- Qi Wang
- Qi Yuan
- Shuo Zhao
Abstract
Search algorithm plays an important role in the motion planning of the robot, it determines whether the mobile robot complete the task. To solve the search task in complex environments, a fusion algorithm based on the Flower Pollination algorithm and Q-learning is proposed. To improve the accuracy, an improved grid map is used in the section of environment modeling to change the original static grid to a combination of static and dynamic grids. Secondly, a combination of Q-learning and Flower Pollination algorithm is used to complete the initialization of the Q-table and accelerate the efficiency of the search and rescue robot path search. A combination of static and dynamic reward function is proposed for the different situations encountered by the search and rescue robot during the search process, as a way to allow the search and rescue robot to get better different feedback results in each specific situation. The experiments are divided into two parts: typical and improved grid map path planning. Experiments show that the improved grid map can increase the success rate and the FIQL can be used by the search and rescue robot to accomplish the task in a complex environment. Compared with other algorithms, FIQL can reduce the number of iterations, improve the adaptability of the search and rescue robot to complex environments, and have the advantages of short convergence time and small computational effort.
Suggested Citation
Bing Hao & Jianshuo Zhao & He Du & Qi Wang & Qi Yuan & Shuo Zhao, 2023.
"A search and rescue robot search method based on flower pollination algorithm and Q-learning fusion algorithm,"
PLOS ONE, Public Library of Science, vol. 18(3), pages 1-22, March.
Handle:
RePEc:plo:pone00:0283751
DOI: 10.1371/journal.pone.0283751
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0283751. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.