Author
Listed:
- Longqin Xu
- Hao Deng
- Yingying Cao
- Wenjun Liu
- Guohuang He
- Wenting Fan
- Tangliang Wei
- Liang Cao
- Tonglai Liu
- Shuangyin Liu
Abstract
The feeding amount of bass farming is closely related to the number of bass. It is of great significance to master the number of bass to achieve accurate feeding and improve the economic benefits of the farm. In view of the interference caused by the problems of multiple targets and target occlusion in bass data for bass detection, this paper proposes a bass target detection model based on improved YOLOV5 in circulating water system. Firstly, acquiring by HD cameras, Mosaic-8, a data augmentation method, is utilized to expand datasets and improve the generalization ability of the model. And K-means clustering algorithm is applied to generate suitable coordinates of prior boxes to improve training efficiency. Secondly, Coordinate Attention mechanism (CA) is introduced into backbone feature extraction network and neck feature fusion network to enhance attention to targets of interest. Finally, Soft-NMS algorithm replaces Non-Maximum Suppression algorithm (NMS) to re-screen prediction boxes and keep targets with higher overlap, which effectively solves the problems of missed detection and false detection. The experiments show that the proposed model can reach 98.09% in detection accuracy and detection speed reaches 13.4ms. The proposed model can help bass farmers under the circulating water system to accurately grasp the number of bass, which has important application value to realize accurate feeding and water conservation.
Suggested Citation
Longqin Xu & Hao Deng & Yingying Cao & Wenjun Liu & Guohuang He & Wenting Fan & Tangliang Wei & Liang Cao & Tonglai Liu & Shuangyin Liu, 2023.
"Bass detection model based on improved YOLOv5 in circulating water system,"
PLOS ONE, Public Library of Science, vol. 18(3), pages 1-14, March.
Handle:
RePEc:plo:pone00:0283671
DOI: 10.1371/journal.pone.0283671
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0283671. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.