IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0283466.html
   My bibliography  Save this article

Predicting fall risk using multiple mechanics-based metrics for a planar biped model

Author

Listed:
  • Daniel Williams
  • Anne E Martin

Abstract

For both humans and robots, falls are undesirable, motivating the development of fall prediction models. Many mechanics-based fall risk metrics have been proposed and validated to varying degrees, including the extrapolated center of mass, the foot rotation index, Lyapunov exponents, joint and spatiotemporal variability, and mean spatiotemporal parameters. To obtain a best-case estimate of how well these metrics can predict fall risk both individually and in combination, this work used a planar six-link hip-knee-ankle biped model with curved feet walking at speeds ranging from 0.8 m/s to 1.2 m/s. The true number of steps to fall was determined using the mean first passage times from a Markov chain describing the gaits. In addition, each metric was estimated using the Markov chain of the gait. Because calculating the fall risk metrics from the Markov chain had not been done before, the results were validated using brute force simulations. Except for the short-term Lyapunov exponents, the Markov chains could accurately calculate the metrics. Using the Markov chain data, quadratic fall prediction models were created and evaluated. The models were further evaluated using differing length brute force simulations. None of the 49 tested fall risk metrics could accurately predict the number of steps to fall by themselves. However, when all the fall risk metrics except the Lyapunov exponents were combined into a single model, the accuracy increased substantially. These results suggest that multiple fall risk metrics must be combined to obtain a useful measure of stability. As expected, as the number of steps used to calculate the fall risk metrics increased, the accuracy and precision increased. This led to a corresponding increase in the accuracy and precision of the combined fall risk model. 300 step simulations seemed to provide the best tradeoff between accuracy and using as few steps as possible.

Suggested Citation

  • Daniel Williams & Anne E Martin, 2023. "Predicting fall risk using multiple mechanics-based metrics for a planar biped model," PLOS ONE, Public Library of Science, vol. 18(3), pages 1-24, March.
  • Handle: RePEc:plo:pone00:0283466
    DOI: 10.1371/journal.pone.0283466
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0283466
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0283466&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0283466?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0283466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.