IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0283265.html
   My bibliography  Save this article

Archetypal analysis of COVID-19 in Montana, USA, March 13, 2020 to April 26, 2022

Author

Listed:
  • Emily Stone
  • Sebastian Coombs
  • Erin Landguth

Abstract

Infectious disease data can often involve complex spatial patterns intermixed with temporal trends. Archetypal Analysis is a method to mine complex spatio-temporal data, and can be used to discover the dynamics of spatial patterns. The application of Archetypal Analysis to epidemiological data is relatively new, and here we present one of the first applications on COVID-19 data from March 13, 2020 to April 26, 2022, for the counties of Montana, USA. We present three views of the data set decomposed with Archetypal Analysis. First, we evaluate the entire 56 county data set. Second, we use a mutual information calculation to remove counties whose dynamics are mainly independent from the other counties, reducing the set to 17 counties. Finally, we analyze the top ten counties in terms of population size to focus on the dynamics in the large cities in the state. For each data set, we analyze four significant disease outbreaks across Montana. Archetypal Analysis uncovers distinct spatial patterns for each outbreak and demonstrates that each has a unique trajectory across the state.

Suggested Citation

  • Emily Stone & Sebastian Coombs & Erin Landguth, 2024. "Archetypal analysis of COVID-19 in Montana, USA, March 13, 2020 to April 26, 2022," PLOS ONE, Public Library of Science, vol. 19(1), pages 1-21, January.
  • Handle: RePEc:plo:pone00:0283265
    DOI: 10.1371/journal.pone.0283265
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0283265
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0283265&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0283265?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christopher C. Chapman & Didier P. Monselesan & James S. Risbey & Ming Feng & Bernadette M. Sloyan, 2022. "A large-scale view of marine heatwaves revealed by archetype analysis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xihui Gu & Zaiming Jiang & Yansong Guan & Ming Luo & Jianfeng Li & Lunche Wang & Xiang Zhang & Dongdong Kong & Liangyi Wang, 2025. "Frequent land-ocean transboundary migration of tropical heatwaves under climate change," Nature Communications, Nature, vol. 16(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0283265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.