IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0282265.html
   My bibliography  Save this article

Accelerated linear algebra compiler for computationally efficient numerical models: Success and potential area of improvement

Author

Listed:
  • Xuzhen He

Abstract

The recent dramatic progress in machine learning is partially attributed to the availability of high-performant computers and development tools. The accelerated linear algebra (XLA) compiler is one such tool that automatically optimises array operations (mostly fusion to reduce memory operations) and compiles the optimised operations into high-performant programs specific to target computing platforms. Like machine-learning models, numerical models are often expressed in array operations, and thus their performance can be boosted by XLA. This study is the first of its kind to examine the efficiency of XLA for numerical models, and the efficiency is examined stringently by comparing its performance with that of optimal implementations. Two shared-memory computing platforms are examined–the CPU platform and the GPU platform. To obtain optimal implementations, the computing speed and its optimisation are rigorously studied by considering different workloads and the corresponding computer performance. Two simple equations are found to faithfully modell the computing speed of numerical models with very few easily-measureable parameters. Regarding operation optimisation within XLA, results show that models expressed in low-level operations (e.g., slice, concatenation, and arithmetic operations) are successfully fused while high-level operations (e.g., convolution and roll) are not. Regarding compilation within XLA, results show that for the CPU platform of certain computers and certain simple numerical models on the GPU platform, XLA achieves high efficiency (> 80%) for large problems and acceptable efficiency (10%~80%) for medium-size problems–the gap is from the overhead cost of Python. Unsatisfactory performance is found for the CPU platform of other computers (operations are compiled in a non-optimal way) and for high-dimensional complex models for the GPU platform, where each GPU thread in XLA handles 4 (single precision) or 2 (double precision) output elements–hoping to exploit the high-performant instructions that can read/write 4 or 2 floating-point numbers with one instruction. However, these instructions are rarely used in the generated code for complex models and performance is negatively affected. Therefore, flags should be added to control the compilation for these non-optimal scenarios.

Suggested Citation

  • Xuzhen He, 2023. "Accelerated linear algebra compiler for computationally efficient numerical models: Success and potential area of improvement," PLOS ONE, Public Library of Science, vol. 18(2), pages 1-38, February.
  • Handle: RePEc:plo:pone00:0282265
    DOI: 10.1371/journal.pone.0282265
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0282265
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0282265&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0282265?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0282265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.