IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0282154.html
   My bibliography  Save this article

Optimizing hierarchical tree dissection parameters using historic epidemiologic data as ‘ground truth’

Author

Listed:
  • David Jacobson
  • Joel Barratt

Abstract

Hierarchical clustering of pathogen genotypes is widely used to complement epidemiologic investigations of outbreaks. Investigators must dissect trees to obtain genetic partitions that provide epidemiologists with meaningful information. Statistical approaches to tree dissection often require a user-defined parameter to predict the optimal partition number and augmenting this parameter can drastically impact resultant partition memberships. Here, we demonstrate how to optimize a given tree dissection parameter to maximize accuracy irrespective of the tree dissection method used. We hierarchically clustered 1,873 genotypes of the foodborne pathogen Cyclospora spp., including 587 possessing links to historic outbreaks. We dissected the resulting tree using a statistical method requiring users to select the value of a ‘stringency parameter’ (s), with a recommended value of 95% to 99.5%. We dissected this hierarchical tree across s-values from 94% to 99.5% (at increments of 0.25%), to identify a value that maximized partitioning accuracy, defined as the degree to which genetic partitions conform to known epidemiologic groupings. We show that s-values of 96.5% and 96.75% yield the highest accuracy (> 99.9%) when clustering Cyclospora sp. isolates with known epidemiologic linkages. In practice, the optimized s-value will generate robust genetic partitions comprising isolates likely derived from a common food source, even when the epidemiologic grouping is not known prior to genetic clustering. While the s-value is specific to the tree dissection method used here, the optimization approach described could be applied to any parameter/method used to dissect hierarchical trees.

Suggested Citation

  • David Jacobson & Joel Barratt, 2023. "Optimizing hierarchical tree dissection parameters using historic epidemiologic data as ‘ground truth’," PLOS ONE, Public Library of Science, vol. 18(2), pages 1-13, February.
  • Handle: RePEc:plo:pone00:0282154
    DOI: 10.1371/journal.pone.0282154
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0282154
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0282154&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0282154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0282154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.