Author
Abstract
Testing remains a key tool for managing health care and making health policy during the coronavirus pandemic, and it will probably be important in future pandemics. Because of false negative and false positive tests, the observed fraction of positive tests—the surface positivity—is generally different from the fraction of infected individuals (the incidence rate of the disease). In this paper a previous method for translating surface positivity to a point estimate for incidence rate, then to an appropriate range of values for the incidence rate consistent with the model and data (the test range), and finally to the risk (the probability of including one infected individual) associated with groups of different sizes is illustrated. The method is then extended to include asymptomatic infections. To do so, the process of testing is modeled using both analysis and Monte Carlo simulation. Doing so shows that it is possible to determine point estimates for the fraction of infected and symptomatic individuals, the fraction of uninfected and symptomatic individuals, and the ratio of infected asymptomatic individuals to infected symptomatic individuals. Inclusion of symptom status generalizes the test range from an interval to a region in the plane determined by the incidence rate and the ratio of asymptomatic to symptomatic infections; likelihood methods can be used to determine the contour of the rest region. Points on this contour can be used to compute the risk (defined as the probability of including one asymptomatic infected individual) in groups of different sizes. These results have operational implications that include: positivity rate is not incidence rate; symptom status at testing can provide valuable information about asymptomatic infections; collecting information on time since putative virus exposure at testing is valuable for determining point estimates and test ranges; risk is a graded (rather than binary) function of group size; and because the information provided by testing becomes more accurate with more tests but at a decreasing rate, it is possible to over-test fixed spatial regions. The paper concludes with limitations of the method and directions for future work.
Suggested Citation
Marc Mangel, 2023.
"Operational analysis for COVID-19 testing: Determining the risk from asymptomatic infections,"
PLOS ONE, Public Library of Science, vol. 18(2), pages 1-23, February.
Handle:
RePEc:plo:pone00:0281710
DOI: 10.1371/journal.pone.0281710
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0281710. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.