IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0280609.html
   My bibliography  Save this article

Bayesian network modeling of risk and prodromal markers of Parkinson’s disease

Author

Listed:
  • Meemansa Sood
  • Ulrike Suenkel
  • Anna-Katharina von Thaler
  • Helena U Zacharias
  • Kathrin Brockmann
  • Gerhard W Eschweiler
  • Walter Maetzler
  • Daniela Berg
  • Holger Fröhlich
  • Sebastian Heinzel

Abstract

Parkinson’s disease (PD) is characterized by a long prodromal phase with a multitude of markers indicating an increased PD risk prior to clinical diagnosis based on motor symptoms. Current PD prediction models do not consider interdependencies of single predictors, lack differentiation by subtypes of prodromal PD, and may be limited and potentially biased by confounding factors, unspecific assessment methods and restricted access to comprehensive marker data of prospective cohorts. We used prospective data of 18 established risk and prodromal markers of PD in 1178 healthy, PD-free individuals and 24 incident PD cases collected longitudinally in the Tübingen evaluation of Risk factors for Early detection of NeuroDegeneration (TREND) study at 4 visits over up to 10 years. We employed artificial intelligence (AI) to learn and quantify PD marker interdependencies via a Bayesian network (BN) with probabilistic confidence estimation using bootstrapping. The BN was employed to generate a synthetic cohort and individual marker profiles. Robust interdependencies were observed for BN edges from age to subthreshold parkinsonism and urinary dysfunction, sex to substantia nigra hyperechogenicity, depression, non-smoking and to constipation; depression to symptomatic hypotension and excessive daytime somnolence; solvent exposure to cognitive deficits and to physical inactivity; and non-smoking to physical inactivity. Conversion to PD was interdependent with prior subthreshold parkinsonism, sex and substantia nigra hyperechogenicity. Several additional interdependencies with lower probabilistic confidence were identified. Synthetic subjects generated via the BN based representation of the TREND study were realistic as assessed through multiple comparison approaches of real and synthetic data. Altogether our work demonstrates the potential of modern AI approaches (specifically BNs) both for modelling and understanding interdependencies between PD risk and prodromal markers, which are so far not accounted for in PD prediction models, as well as for generating realistic synthetic data.

Suggested Citation

  • Meemansa Sood & Ulrike Suenkel & Anna-Katharina von Thaler & Helena U Zacharias & Kathrin Brockmann & Gerhard W Eschweiler & Walter Maetzler & Daniela Berg & Holger Fröhlich & Sebastian Heinzel, 2023. "Bayesian network modeling of risk and prodromal markers of Parkinson’s disease," PLOS ONE, Public Library of Science, vol. 18(2), pages 1-15, February.
  • Handle: RePEc:plo:pone00:0280609
    DOI: 10.1371/journal.pone.0280609
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0280609
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0280609&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0280609?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0280609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.