Author
Listed:
- Andrew Ma
- Nandakishor Desai
- Kenneth K Lau
- Marimuthu Palaniswami
- Terence J O’Brien
- Paari Palaniswami
- Dominic Thyagarajan
Abstract
Changes to the voice are prevalent and occur early in Parkinson’s disease. Correlates of these voice changes on four-dimensional laryngeal computed-tomography imaging, such as the inter-arytenoid distance, are promising biomarkers of the disease’s presence and severity. However, manual measurement of the inter-arytenoid distance is a laborious process, limiting its feasibility in large-scale research and clinical settings. Automated methods of measurement provide a solution. Here, we present a machine-learning module which determines the inter-arytenoid distance in an automated manner. We obtained automated inter-arytenoid distance readings on imaging from participants with Parkinson’s disease as well as healthy controls, and then validated these against manually derived estimates. On a modified Bland-Altman analysis, we found a mean bias of 1.52 mm (95% limits of agreement -1.7 to 4.7 mm) between the automated and manual techniques, which improves to a mean bias of 0.52 mm (95% limits of agreement -1.9 to 2.9 mm) when variability due to differences in slice selection between the automated and manual methods are removed. Our results demonstrate that estimates of the inter-arytenoid distance with our automated machine-learning module are accurate, and represents a promising tool to be utilized in future work studying the laryngeal changes in Parkinson’s disease.
Suggested Citation
Andrew Ma & Nandakishor Desai & Kenneth K Lau & Marimuthu Palaniswami & Terence J O’Brien & Paari Palaniswami & Dominic Thyagarajan, 2023.
"Automated measurement of inter-arytenoid distance on 4D laryngeal CT: A validation study,"
PLOS ONE, Public Library of Science, vol. 18(1), pages 1-11, January.
Handle:
RePEc:plo:pone00:0279927
DOI: 10.1371/journal.pone.0279927
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0279927. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.