IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0279693.html
   My bibliography  Save this article

Confidence intervals and sample size planning for optimal cutpoints

Author

Listed:
  • Christian Thiele
  • Gerrit Hirschfeld

Abstract

Various methods are available to determine optimal cutpoints for diagnostic measures. Unfortunately, many authors fail to report the precision at which these optimal cutpoints are being estimated and use sample sizes that are not suitable to achieve an adequate precision. The aim of the present study is to evaluate methods to estimate the variance of cutpoint estimations based on published descriptive statistics (‘post-hoc’) and to discuss sample size planning for estimating cutpoints. We performed a simulation study using widely-used methods to optimize the Youden index (empirical, normal, and transformed normal method) and three methods to determine confidence intervals (the delta method, the parametric bootstrap, and the nonparametric bootstrap). We found that both the delta method and the parametric bootstrap are suitable for post-hoc calculation of confidence intervals, depending on the sample size, the distribution of marker values, and the correctness of model assumptions. On average, the parametric bootstrap in combination with normal-theory-based cutpoint estimation has the best coverage. The delta method performs very well for normally distributed data, except in small samples, and is computationally more efficient. Obviously, not every combination of distributions, cutpoint optimization methods, and optimized metrics can be simulated and a lot of the literature is concerned specifically with cutpoints and confidence intervals for the Youden index. This complicates sample size planning for studies that estimate optimal cutpoints. As a practical tool, we introduce a web-application that allows for running simulations of width and coverage of confidence intervals using the percentile bootstrap with various distributions and cutpoint optimization methods.

Suggested Citation

  • Christian Thiele & Gerrit Hirschfeld, 2023. "Confidence intervals and sample size planning for optimal cutpoints," PLOS ONE, Public Library of Science, vol. 18(1), pages 1-13, January.
  • Handle: RePEc:plo:pone00:0279693
    DOI: 10.1371/journal.pone.0279693
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0279693
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0279693&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0279693?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0279693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.