IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0279423.html
   My bibliography  Save this article

Anomalies in dye-terminator DNA sequencing caused by a natural G-quadruplex

Author

Listed:
  • George S Brush

Abstract

A G-rich DNA sequence from yeast that can form a non-canonical G-quadruplex structure was cloned into a plasmid vector and subjected to Sanger sequencing using dye-labeled dideoxynucleotides. Two different effects were observed. In one, presence of the G4 sequence on the template strand led to incorrect incorporation of an A residue at an internal position in the G4 sequence. In the other, the nascent strand caused attenuation of the readout coincident with synthesis of the G-rich DNA. The two effects are novel examples of disruption in DNA synthesis caused by a G4 sequence. These results provide a new example of a DNA structure that could influence genomic stability in human cells.

Suggested Citation

  • George S Brush, 2022. "Anomalies in dye-terminator DNA sequencing caused by a natural G-quadruplex," PLOS ONE, Public Library of Science, vol. 17(12), pages 1-19, December.
  • Handle: RePEc:plo:pone00:0279423
    DOI: 10.1371/journal.pone.0279423
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0279423
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0279423&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0279423?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paulina Prorok & Marie Artufel & Antoine Aze & Philippe Coulombe & Isabelle Peiffer & Laurent Lacroix & Aurore Guédin & Jean-Louis Mergny & Julia Damaschke & Aloys Schepers & Christelle Cayrou & Marie, 2019. "Involvement of G-quadruplex regions in mammalian replication origin activity," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    2. Katrin Paeschke & Matthew L. Bochman & P. Daniela Garcia & Petr Cejka & Katherine L. Friedman & Stephen C. Kowalczykowski & Virginia A. Zakian, 2013. "Pif1 family helicases suppress genome instability at G-quadruplex motifs," Nature, Nature, vol. 497(7450), pages 458-462, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna C. Papageorgiou & Michaela Pospisilova & Jakub Cibulka & Raghib Ashraf & Christopher A. Waudby & Pavel Kadeřávek & Volha Maroz & Karel Kubicek & Zbynek Prokop & Lumir Krejci & Konstantinos Tripsi, 2023. "Recognition and coacervation of G-quadruplexes by a multifunctional disordered region in RECQ4 helicase," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Daegyu Park & Woo-Chang Chung & Shuang Gong & Subramaniyam Ravichandran & Gwang Myeong Lee & Minji Han & Kyeong Kyu Kim & Jin-Hyun Ahn, 2024. "G-quadruplex as an essential structural element in cytomegalovirus replication origin," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Zebin Hong & Alicia K. Byrd & Jun Gao & Poulomi Das & Vanessa Qianmin Tan & Emory G. Malone & Bertha Osei & John C. Marecki & Reine U. Protacio & Wayne P. Wahls & Kevin D. Raney & Haiwei Song, 2024. "Eukaryotic Pif1 helicase unwinds G-quadruplex and dsDNA using a conserved wedge," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0279423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.