Author
Listed:
- Clémentine Aguet
- João Jorge
- Jérôme Van Zaen
- Martin Proença
- Guillaume Bonnier
- Pascal Frossard
- Mathieu Lemay
Abstract
Blood pressure (BP) is a crucial biomarker giving valuable information regarding cardiovascular diseases but requires accurate continuous monitoring to maximize its value. In the effort of developing non-invasive, non-occlusive and continuous BP monitoring devices, photoplethysmography (PPG) has recently gained interest. Researchers have attempted to estimate BP based on the analysis of PPG waveform morphology, with promising results, yet often validated on a small number of subjects with moderate BP variations. This work presents an accurate BP estimator based on PPG morphology features. The method first uses a clinically-validated algorithm (oBPM®) to perform signal preprocessing and extraction of physiological features. A subset of features that best reflects BP changes is automatically identified by Lasso regression, and a feature relevance analysis is conducted. Three machine learning (ML) methods are then investigated to translate this subset of features into systolic BP (SBP) and diastolic BP (DBP) estimates; namely Lasso regression, support vector regression and Gaussian process regression. The accuracy of absolute BP estimates and trending ability are evaluated. Such an approach considerably improves the performance for SBP estimation over previous oBPM® technology, with a reduction in the standard deviation of the error of over 20%. Furthermore, rapid BP changes assessed by the PPG-based approach demonstrates concordance rate over 99% with the invasive reference. Altogether, the results confirm that PPG morphology features can be combined with ML methods to accurately track BP variations generated during anesthesia induction. They also reinforce the importance of adding a calibration measure to obtain an absolute BP estimate.
Suggested Citation
Clémentine Aguet & João Jorge & Jérôme Van Zaen & Martin Proença & Guillaume Bonnier & Pascal Frossard & Mathieu Lemay, 2023.
"Blood pressure monitoring during anesthesia induction using PPG morphology features and machine learning,"
PLOS ONE, Public Library of Science, vol. 18(2), pages 1-20, February.
Handle:
RePEc:plo:pone00:0279419
DOI: 10.1371/journal.pone.0279419
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0279419. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.