IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0278917.html
   My bibliography  Save this article

Morphology extraction of fetal ECG using temporal CNN-based nonlinear adaptive noise cancelling

Author

Listed:
  • Shi Cao
  • Hui Xiao
  • Gao Gong
  • Weiyang Fang
  • Chaomin Chen

Abstract

Objectives: Noninvasive fetal electrocardiography (FECG) offers many advantages over alternative fetal monitoring techniques in evaluating fetal health conditions. However, it is difficult to extract a clean FECG signal with morphological features from an abdominal ECG recorded at the maternal abdomen; the signal is usually contaminated by the maternal ECG and various noises. The aim of the work is to extract an FECG signal that preserves the morphological features from the mother’s abdominal ECG recording, which allows for accurately estimating the fetal heart rate (FHR) and analyzing the waveforms of the fetal ECG. Methods: We propose a novel nonlinear adaptive noise cancelling framework (ANC) based on a temporal convolutional neural network (CNN) to effectively extract fetal ECG signals from mothers’ abdominal ECG recordings. The proposed framework consists of a two-stage network, using the ANC architecture; one network is for the maternal ECG component elimination and the other is for the residual noise component removal of the extracted fetal ECG signal. Then, JADE (one of the blind source separation algorithms) is applied as a postprocessing step to produce a clean fetal ECG signal. Results: Synthetic ECG data (FECGSYNDB) and clinical ECG data (NIFECGDB, PCDB) are used to evaluate the extraction performance of the proposed framework. The statistical and visual results demonstrate that our method outperforms the other state-of-the-art algorithms in the literature. Specifically, on the FECGSYNDB, the mean squared error (MSE), signal-to-noise ratio (SNR), correlation coefficient (R) and F1-score of our method are 0.16, 7.94, 0.95 and 98.89%, respectively. The F1-score on the NIFECGDB reaches 98.62%. The value of the F1-score on the PCDB is 98.62%. Conclusion: As opposed to the existing algorithms being restricted to fetal QRS complex detection, the proposed framework can preserve the morphological features of the extracted fetal ECG signal well, which could support medical diagnoses based on the morphology of the fetal ECG signal.

Suggested Citation

  • Shi Cao & Hui Xiao & Gao Gong & Weiyang Fang & Chaomin Chen, 2022. "Morphology extraction of fetal ECG using temporal CNN-based nonlinear adaptive noise cancelling," PLOS ONE, Public Library of Science, vol. 17(12), pages 1-22, December.
  • Handle: RePEc:plo:pone00:0278917
    DOI: 10.1371/journal.pone.0278917
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0278917
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0278917&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0278917?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0278917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.