Author
Listed:
- Rashad Moqa
- Irfan Younas
- Maryam Bashir
Abstract
Background: Studies on genome-wide associations help to determine the cause of many genetic diseases. Genome-wide associations typically focus on associations between single-nucleotide polymorphisms (SNPs). Genotyping every SNP in a chromosomal region for identifying genetic variation is computationally very expensive. A representative subset of SNPs, called tag SNPs, can be used to identify genetic variation. Small tag SNPs save the computation time of genotyping platform, however, there could be missing data or genotyping errors in small tag SNPs. This study aims to solve Tag SNPs selection problem using many-objective evolutionary algorithms. Methods: Tag SNPs selection can be viewed as an optimization problem with some trade-offs between objectives, e.g. minimizing the number of tag SNPs and maximizing tolerance for missing data. In this study, the tag SNPs selection problem is formulated as a many-objective problem. Nondominated Sorting based Genetic Algorithm (NSGA-III), and Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), which are Many-Objective evolutionary algorithms, have been applied and investigated for optimal tag SNPs selection. This study also investigates different initialization methods like greedy and random initialization. optimization. Results: The evaluation measures used for comparing results for different algorithms are Hypervolume, Range, SumMin, MinSum, Tolerance rate, and Average Hamming distance. Overall MOEA/D algorithm gives superior results as compared to other algorithms in most cases. NSGA-III outperforms NSGA-II and other compared algorithms on maximum tolerance rate, and SPEA2 outperforms all algorithms on average hamming distance. Conclusion: Experimental results show that the performance of our proposed many-objective algorithms is much superior as compared to the results of existing methods. The outcomes show the advantages of greedy initialization over random initialization using NSGA-III, SPEA2, and MOEA/D to solve the tag SNPs selection as many-objective optimization problem.
Suggested Citation
Rashad Moqa & Irfan Younas & Maryam Bashir, 2022.
"Assessing effectiveness of many-objective evolutionary algorithms for selection of tag SNPs,"
PLOS ONE, Public Library of Science, vol. 17(12), pages 1-24, December.
Handle:
RePEc:plo:pone00:0278560
DOI: 10.1371/journal.pone.0278560
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0278560. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.