Author
Listed:
- Shiqi Wang
- Jinwan Wang
- Mark Xuefang Zhu
- Qian Tan
Abstract
Minor amputations are performed in a large proportion of patients with diabetic foot ulcers (DFU) and early identification of the outcome of minor amputations facilitates medical decision-making and ultimately reduces major amputations and deaths. However, there are currently no clinical predictive tools for minor amputations in patients with DFU. We aim to establish a predictive model based on machine learning to quickly identify patients requiring minor amputation among newly admitted patients with DFU. Overall, 362 cases with University of Texas grade (UT) 3 DFU were screened from tertiary care hospitals in East China. We utilized the synthetic minority oversampling strategy to compensate for the disparity in the initial dataset. A univariable analysis revealed nine variables to be included in the model: random blood glucose, years with diabetes, cardiovascular diseases, peripheral arterial diseases, DFU history, smoking history, albumin, creatinine, and C-reactive protein. Then, risk prediction models based on five machine learning algorithms: decision tree, random forest, logistic regression, support vector machine, and extreme gradient boosting (XGBoost) were independently developed with these variables. After evaluation, XGBoost earned the highest score (accuracy 0.814, precision 0.846, recall 0.767, F1-score 0.805, and AUC 0.881). For convenience, a web-based calculator based on our data and the XGBoost algorithm was established (https://dfuprediction.azurewebsites.net/). These findings imply that XGBoost can be used to develop a reliable prediction model for minor amputations in patients with UT3 DFU, and that our online calculator will make it easier for clinicians to assess the risk of minor amputations and make proactive decisions.
Suggested Citation
Shiqi Wang & Jinwan Wang & Mark Xuefang Zhu & Qian Tan, 2022.
"Machine learning for the prediction of minor amputation in University of Texas grade 3 diabetic foot ulcers,"
PLOS ONE, Public Library of Science, vol. 17(12), pages 1-17, December.
Handle:
RePEc:plo:pone00:0278445
DOI: 10.1371/journal.pone.0278445
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0278445. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.