IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0278346.html
   My bibliography  Save this article

L2C2: Last-level compressed-contents non-volatile cache and a procedure to forecast performance and lifetime

Author

Listed:
  • Carlos Escuin
  • Pablo Ibáñez
  • Denis Navarro
  • Teresa Monreal
  • José M Llabería
  • Víctor Viñals

Abstract

Several emerging non-volatile (NV) memory technologies are rising as interesting alternatives to build the Last-Level Cache (LLC). Their advantages, compared to SRAM memory, are higher density and lower static power, but write operations wear out the bitcells to the point of eventually losing their storage capacity. In this context, this paper presents a novel LLC organization designed to extend the lifetime of the NV data array and a procedure to forecast in detail the capacity and performance of such an NV-LLC over its lifetime. From a methodological point of view, although different approaches are used in the literature to analyze the degradation of an NV-LLC, none of them allows to study in detail its temporal evolution. In this sense, this work proposes a forecasting procedure that combines detailed simulation and prediction, allowing an accurate analysis of the impact of different cache control policies and mechanisms (replacement, wear-leveling, compression, etc.) on the temporal evolution of the indices of interest, such as the effective capacity of the NV-LLC or the system IPC. We also introduce L2C2, a LLC design intended for implementation in NV memory technology that combines fault tolerance, compression, and internal write wear leveling for the first time. Compression is not used to store more blocks and increase the hit rate, but to reduce the write rate and increase the lifetime during which the cache supports near-peak performance. In addition, to support byte loss without performance drop, L2C2 inherently allows N redundant bytes to be added to each cache entry. Thus, L2C2+N, the endurance-scaled version of L2C2, allows balancing the cost of redundant capacity with the benefit of longer lifetime. For instance, as a use case, we have implemented the L2C2 cache with STT-RAM technology. It has affordable hardware overheads compared to that of a baseline NV-LLC without compression in terms of area, latency and energy consumption, and increases up to 6-37 times the time in which 50% of the effective capacity is degraded, depending on the variability in the manufacturing process. Compared to L2C2, L2C2+6 which adds 6 bytes of redundant capacity per entry, that means 9.1% of storage overhead, can increase up to 1.4-4.3 times the time in which the system gets its initial peak performance degraded.

Suggested Citation

  • Carlos Escuin & Pablo Ibáñez & Denis Navarro & Teresa Monreal & José M Llabería & Víctor Viñals, 2023. "L2C2: Last-level compressed-contents non-volatile cache and a procedure to forecast performance and lifetime," PLOS ONE, Public Library of Science, vol. 18(2), pages 1-36, February.
  • Handle: RePEc:plo:pone00:0278346
    DOI: 10.1371/journal.pone.0278346
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0278346
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0278346&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0278346?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0278346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.