IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0278167.html
   My bibliography  Save this article

Experimental identification of individual insect visual tracking delays in free flight and their effects on visual swarm patterns

Author

Listed:
  • Md Saiful Islam
  • Imraan A Faruque

Abstract

Insects are model systems for swarming robotic agents, yet engineered descriptions do not fully explain the mechanisms by which they provide onboard sensing and feedback to support such motions; in particular, the exact value and population distribution of visuomotor processing delays are not yet quantified, nor the effect of such delays on a visually-interconnected swarm. This study measures untethered insects performing a solo in-flight visual tracking task and applies system identification techniques to build an experimentally-consistent model of the visual tracking behaviors, and then integrates the measured experimental delay and its variation into a visually interconnected swarm model to develop theoretical and simulated solutions and stability limits. The experimental techniques include the development of a moving visual stimulus and real-time multi camera based tracking system called VISIONS (Visual Input System Identification from Outputs of Naturalistic Swarms) providing the capability to recognize and simultaneously track both a visual stimulus (input) and an insect at a frame rate of 60-120 Hz. A frequency domain analysis of honeybee tracking trajectories is conducted via fast Fourier and Chirp Z transforms, identifying a coherent linear region and its model structure. The model output is compared in time and frequency domain simulations. The experimentally measured delays are then related to probability density functions, and both the measured delays and their distribution are incorporated as inter-agent interaction delays in a second order swarming dynamics model. Linear stability and bifurcation analysis on the long range asymptotic behavior is used to identify delay distributions leading to a family of solutions with stable and unstable swarm center of mass (barycenter) locations. Numerical simulations are used to verify these results with both continuous and measured distributions. The results of this experiment quantify a model structure and temporal lag (transport delay) in the closed loop dynamics, and show that this delay varies across 50 individuals from 5-110ms, with an average delay of 22ms and a standard deviation of 40ms. When analyzed within the swarm model, the measured delays support a diversity of solutions and indicate an unstable barycenter.

Suggested Citation

  • Md Saiful Islam & Imraan A Faruque, 2022. "Experimental identification of individual insect visual tracking delays in free flight and their effects on visual swarm patterns," PLOS ONE, Public Library of Science, vol. 17(11), pages 1-23, November.
  • Handle: RePEc:plo:pone00:0278167
    DOI: 10.1371/journal.pone.0278167
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0278167
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0278167&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0278167?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0278167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.