Author
Listed:
- Rutinaldo Aguiar Nascimento
- Álvaro Barroca Neto
- Yuri Shalom de Freitas Bezerra
- Hugo Alexandre Dantas do Nascimento
- Liacir dos Santos Lucena
- Joaquim Elias de Freitas
Abstract
The FWI is formulated as a nonlinear optimization problem that traditionally uses local (derivative-based) minimization to find the scalar field of properties that best represents the field seismic data. This problem has a high computational cost and accuracy limited to local minima, in addition to suffering from a slow convergence rate (Cycle Skipping). Therefore, we developed a two-phase hybrid optimization algorithm based on DFO algorithms. The first use global minimization and clustering technique. The second use local minimization. In phase 1 we adopted the modified PSO and K-means algorithms and in phase 2, we adopted the ANMS. We call the hybrid algorithm of the PSO-Kmeans-ANMS. Where K-means is responsible for dividing swarms of particles into 2 clusters at every instant. This strategy aims to automatically balance the mechanisms of exploration and exploitation of the parameter search space by the hybrid algorithm, allowing one to find more precise solutions and consequently improving its convergence. The PSO-Kmeans-ANMS algorithm was validated on the set of 12 benchmark functions and applied to the FWI 1D problem. We compared PSO-Kmeans-ANMS with classic PSO, modified PSO, and ANMS algorithms. The metrics used were are the average execution time and the success rate (an error of ± 4% of the optimal solution). In all validation experiments and the FWI application, the PSO-Kmeans-ANMS performed well in terms of robustness and computational efficiency. In the case of FWI, there was a significant reduction in computational cost, thus presenting a relevant result.
Suggested Citation
Rutinaldo Aguiar Nascimento & Álvaro Barroca Neto & Yuri Shalom de Freitas Bezerra & Hugo Alexandre Dantas do Nascimento & Liacir dos Santos Lucena & Joaquim Elias de Freitas, 2022.
"A new hybrid optimization approach using PSO, Nelder-Mead Simplex and Kmeans clustering algorithms for 1D Full Waveform Inversion,"
PLOS ONE, Public Library of Science, vol. 17(12), pages 1-46, December.
Handle:
RePEc:plo:pone00:0277900
DOI: 10.1371/journal.pone.0277900
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0277900. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.