Author
Listed:
- Ruoqi Wang
- Jiawei Li
- Ruibin Bai
- Lei Wang
Abstract
It is necessary to ensure the ship’s stability in container ship stowage and loading and unloading containers. This work aims to reduce the container dumping operation at the midway port and improve the efficiency of ship transportation. Firstly, the constraint problem of the traditional container ship stacking is introduced to realize the multi-condition mathematical model of the container ship, container, and wharf. Secondly, a Hybrid Genetic and Simulated Annealing Algorithm (HGSAA) model is proposed for the container stacking and loading stacking in the yard. The specific container space allocation and multi-yard crane adjustment scheme are studied. Finally, the effectiveness of the multi-condition container ship stowage model is verified by numerical experiments by changing the number of outbound containers, storage strategies, storage yards, and bridges. The experimental results show that the HGSAA mode converges to 106.1min at the 751st iteration. Of these, the non-loading and unloading time of yard bridge 1 is 3.43min. The number of operating boxes is 25. The non-loading and unloading time of yard bridge 2 is 3.2min, and the operating box volume is 25 boxes. The objective function of the genetic algorithm converges when it iterates to generation 903 and 107.9min. Among them, the non-loading and unloading time of yard bridge 1 is 4.1min. The non-loading and unloading time of yard bridge 2 is 3.1min. Therefore, the proposed HGSAA has a faster convergence speed than the genetic algorithm and can obtain relatively good results. The proposed container stacking strategy can effectively solve the specific container allocation and multi-yard crane scheduling problems. The finding provides a reference for optimizing container scheduling and improving shipping transportation efficiency.
Suggested Citation
Ruoqi Wang & Jiawei Li & Ruibin Bai & Lei Wang, 2023.
"Storage strategy of outbound containers with uncertain weight by data-driven hybrid genetic simulated annealing algorithm,"
PLOS ONE, Public Library of Science, vol. 18(4), pages 1-25, April.
Handle:
RePEc:plo:pone00:0277890
DOI: 10.1371/journal.pone.0277890
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0277890. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.