IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0277866.html
   My bibliography  Save this article

A multicategory logit model detecting temporal changes in antimicrobial resistance

Author

Listed:
  • Marc Aerts
  • Kendy Tzu-yun Teng
  • Stijn Jaspers
  • Julio Alvarez Sanchez

Abstract

Monitoring and investigating temporal trends in antimicrobial data is a high priority for human and animal health authorities. Timely detection of temporal changes in antimicrobial resistance (AMR) can rely not only on monitoring and analyzing the proportion of resistant isolates based on the use of a clinical or epidemiological cut-off value, but also on more subtle changes and trends in the full distribution of minimum inhibitory concentration (MIC) values. The nature of the MIC distribution is categorical and ordinal (discrete). In this contribution, we developed a particular family of multicategory logit models for estimating and modelling MIC distributions over time. It allows the detection of a multitude of temporal trends in the full discrete distribution, without any assumption on the underlying continuous distribution for the MIC values. The experimental ranges of the serial dilution experiments may vary across laboratories and over time. The proposed categorical model allows to estimate the MIC distribution over the maximal range of the observed experiments, and allows the observed ranges to vary across labs and over time. The use and performance of the model is illustrated with two datasets on AMR in Salmonella.

Suggested Citation

  • Marc Aerts & Kendy Tzu-yun Teng & Stijn Jaspers & Julio Alvarez Sanchez, 2022. "A multicategory logit model detecting temporal changes in antimicrobial resistance," PLOS ONE, Public Library of Science, vol. 17(12), pages 1-22, December.
  • Handle: RePEc:plo:pone00:0277866
    DOI: 10.1371/journal.pone.0277866
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0277866
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0277866&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0277866?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Komárek, Arnost, 2009. "A new R package for Bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3932-3947, October.
    2. Min Zhang & Chong Wang & Annette O’Connor, 2020. "A hierarchical Bayesian latent class mixture model with censorship for detection of linear temporal changes in antibiotic resistance," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min Zhang & Chong Wang & Annette O’Connor, 2020. "A hierarchical Bayesian latent class mixture model with censorship for detection of linear temporal changes in antibiotic resistance," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-18, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0277866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.