Author
Listed:
- Shesh N Rai
- Samarendra Das
- Jianmin Pan
- Dwijesh C Mishra
- Xiao-An Fu
Abstract
Early detection of lung cancer is a crucial factor for increasing its survival rates among the detected patients. The presence of carbonyl volatile organic compounds (VOCs) in exhaled breath can play a vital role in early detection of lung cancer. Identifying these VOC markers in breath samples through innovative statistical and machine learning techniques is an important task in lung cancer research. Therefore, we proposed an experimental approach for generation of VOC molecular concentration data using unique silicon microreactor technology and further identification and characterization of key relevant VOCs important for lung cancer detection through statistical and machine learning algorithms. We reported several informative VOCs and tested their effectiveness in multi-group classification of patients. Our analytical results indicated that seven key VOCs, including C4H8O2, C13H22O, C11H22O, C2H4O2, C7H14O, C6H12O, and C5H8O, are sufficient to detect the lung cancer patients with higher mean classification accuracy (92%) and lower standard error (0.03) compared to other combinations. In other words, the molecular concentrations of these VOCs in exhaled breath samples were able to discriminate the patients with lung cancer (n = 156) from the healthy smoker and nonsmoker controls (n = 193) and patients with benign pulmonary nodules (n = 65). The quantification of carbonyl VOC profiles from breath samples and identification of crucial VOCs through our experimental approach paves the way forward for non-invasive lung cancer detection. Further, our experimental and analytical approach of VOC quantitative analysis in breath samples may be extended to other diseases, including COVID-19 detection.
Suggested Citation
Shesh N Rai & Samarendra Das & Jianmin Pan & Dwijesh C Mishra & Xiao-An Fu, 2022.
"Multigroup prediction in lung cancer patients and comparative controls using signature of volatile organic compounds in breath samples,"
PLOS ONE, Public Library of Science, vol. 17(11), pages 1-18, November.
Handle:
RePEc:plo:pone00:0277431
DOI: 10.1371/journal.pone.0277431
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0277431. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.