Author
Listed:
- Masahiro Nishi
- Eiichiro Uchino
- Yasushi Okuno
- Satoaki Matoba
Abstract
Commonly used prediction methods for acute myocardial infarction (AMI) were created before contemporary percutaneous coronary intervention was recognized as the primary therapy. Although several studies have used machine learning techniques for prognostic prediction of patients with AMI, its clinical application has not been achieved. Here, we developed an online application tool using a machine learning model to predict in-hospital mortality in patients with AMI. A total of 2,553 cases of ST-elevation AMI were assigned to 80% training subset for cross validation and 20% test subset for model performance evaluation. We implemented random forest classifier for the binary classification of in-hospital mortality. The selected best feature set consisted of ten clinical and biological markers including max creatine phosphokinase, hemoglobin, heart rate, creatinine, systolic blood pressure, blood sugar, age, Killip class, white blood cells, and c-reactive protein. Our model achieved high performance: the area under the curve of the receiver operating characteristic curve for the test subset, 0.95: sensitivity, 0.89: specificity, 0.91: precision, 0.43: accuracy, 0.91 respectively, which outperformed common scoring methods. The freely available application tool for prognostic prediction can contribute to risk triage and decision-making in patient-centered modern clinical practice for AMI.
Suggested Citation
Masahiro Nishi & Eiichiro Uchino & Yasushi Okuno & Satoaki Matoba, 2022.
"Robust prognostic prediction model developed with integrated biological markers for acute myocardial infarction,"
PLOS ONE, Public Library of Science, vol. 17(11), pages 1-12, November.
Handle:
RePEc:plo:pone00:0277260
DOI: 10.1371/journal.pone.0277260
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0277260. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.