IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0277199.html
   My bibliography  Save this article

Structure learning enhances concept formation in synthetic Active Inference agents

Author

Listed:
  • Victorita Neacsu
  • M Berk Mirza
  • Rick A Adams
  • Karl J Friston

Abstract

Humans display astonishing skill in learning about the environment in which they operate. They assimilate a rich set of affordances and interrelations among different elements in particular contexts, and form flexible abstractions (i.e., concepts) that can be generalised and leveraged with ease. To capture these abilities, we present a deep hierarchical Active Inference model of goal-directed behaviour, and the accompanying belief update schemes implied by maximising model evidence. Using simulations, we elucidate the potential mechanisms that underlie and influence concept learning in a spatial foraging task. We show that the representations formed–as a result of foraging–reflect environmental structure in a way that is enhanced and nuanced by Bayesian model reduction, a special case of structure learning that typifies learning in the absence of new evidence. Synthetic agents learn associations and form concepts about environmental context and configuration as a result of inferential, parametric learning, and structure learning processes–three processes that can produce a diversity of beliefs and belief structures. Furthermore, the ensuing representations reflect symmetries for environments with identical configurations.

Suggested Citation

  • Victorita Neacsu & M Berk Mirza & Rick A Adams & Karl J Friston, 2022. "Structure learning enhances concept formation in synthetic Active Inference agents," PLOS ONE, Public Library of Science, vol. 17(11), pages 1-34, November.
  • Handle: RePEc:plo:pone00:0277199
    DOI: 10.1371/journal.pone.0277199
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0277199
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0277199&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0277199?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael L. Mack & Alison R. Preston & Bradley C. Love, 2020. "Ventromedial prefrontal cortex compression during concept learning," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nir Moneta & Mona M. Garvert & Hauke R. Heekeren & Nicolas W. Schuck, 2023. "Task state representations in vmPFC mediate relevant and irrelevant value signals and their behavioral influence," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    2. Eleanor Holton & Jan Grohn & Harry Ward & Sanjay G. Manohar & Jill X. O’Reilly & Nils Kolling, 2024. "Goal commitment is supported by vmPFC through selective attention," Nature Human Behaviour, Nature, vol. 8(7), pages 1351-1365, July.
    3. Atsushi Kikumoto & Apoorva Bhandari & Kazuhisa Shibata & David Badre, 2024. "A transient high-dimensional geometry affords stable conjunctive subspaces for efficient action selection," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0277199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.