Author
Listed:
- Dengao Li
- Jian Fu
- Jumin Zhao
- Junnan Qin
- Lihui Zhang
Abstract
Heart failure (HF) is the final stage of the various heart diseases developing. The mortality rates of prognosis HF patients are highly variable, ranging from 5% to 75%. Evaluating the all-cause mortality of HF patients is an important means to avoid death and positively affect the health of patients. But in fact, machine learning models are difficult to gain good results on missing values, high dimensions, and imbalances HF data. Therefore, a deep learning system is proposed. In this system, we propose an indicator vector to indicate whether the value is true or be padded, which fast solves the missing values and helps expand data dimensions. Then, we use a convolutional neural network with different kernel sizes to obtain the features information. And a multi-head self-attention mechanism is applied to gain whole channel information, which is essential for the system to improve performance. Besides, the focal loss function is introduced to deal with the imbalanced problem better. The experimental data of the system are from the public database MIMIC-III, containing valid data for 10311 patients. The proposed system effectively and fast predicts four death types: death within 30 days, death within 180 days, death within 365 days and death after 365 days. Our study uses Deep SHAP to interpret the deep learning model and obtains the top 15 characteristics. These characteristics further confirm the effectiveness and rationality of the system and help provide a better medical service.
Suggested Citation
Dengao Li & Jian Fu & Jumin Zhao & Junnan Qin & Lihui Zhang, 2023.
"A deep learning system for heart failure mortality prediction,"
PLOS ONE, Public Library of Science, vol. 18(2), pages 1-20, February.
Handle:
RePEc:plo:pone00:0276835
DOI: 10.1371/journal.pone.0276835
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0276835. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.