IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0275929.html
   My bibliography  Save this article

Kernel-based gene–environment interaction tests for rare variants with multiple quantitative phenotypes

Author

Listed:
  • Xiaoqin Jin
  • Gang Shi

Abstract

Previous studies have suggested that gene–environment interactions (GEIs) between a common variant and an environmental factor can influence multiple correlated phenotypes simultaneously, that is, GEI pleiotropy, and that analyzing multiple phenotypes jointly is more powerful than analyzing phenotypes separately by using single-phenotype GEI tests. Methods to test the GEI for rare variants with multiple phenotypes are, however, lacking. In our work, we model the correlation among the GEI effects of a variant on multiple quantitative phenotypes through four kernels and propose four multiphenotype GEI tests for rare variants, which are a test with a homogeneous kernel (Hom-GEI), a test with a heterogeneous kernel (Het-GEI), a test with a projection phenotype kernel (PPK-GEI) and a test with a linear phenotype kernel (LPK-GEI). Through numerical simulations, we show that correlation among phenotypes can enhance the statistical power except for LPK-GEI, which simply combines statistics from single-phenotype GEI tests and ignores the phenotypic correlations. Among almost all considered scenarios, Het-GEI and PPK-GEI are more powerful than Hom-GEI and LPK-GEI. We apply Het-GEI and PPK-GEI in the genome-wide GEI analysis of systolic blood pressure (SBP) and diastolic blood pressure (DBP) in the UK Biobank. We analyze 18,101 genes and find that LEUTX is associated with SBP and DBP (p = 2.20×10−6) through its interaction with hemoglobin. The single-phenotype GEI test and our multiphenotype GEI tests Het-GEI and PPK-GEI are also used to evaluate the gene–hemoglobin interactions for 22 genes that were previously reported to be associated with SBP or DBP in a meta-analysis of genetic main effects. MYO1C shows nominal significance (p

Suggested Citation

  • Xiaoqin Jin & Gang Shi, 2022. "Kernel-based gene–environment interaction tests for rare variants with multiple quantitative phenotypes," PLOS ONE, Public Library of Science, vol. 17(10), pages 1-19, October.
  • Handle: RePEc:plo:pone00:0275929
    DOI: 10.1371/journal.pone.0275929
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0275929
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0275929&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0275929?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:plo:pone00:0097589 is not listed on IDEAS
    2. Elizabeth T. Cirulli & Simon White & Robert W. Read & Gai Elhanan & William J. Metcalf & Francisco Tanudjaja & Donna M. Fath & Efren Sandoval & Magnus Isaksson & Karen A. Schlauch & Joseph J. Grzymski, 2020. "Genome-wide rare variant analysis for thousands of phenotypes in over 70,000 exomes from two cohorts," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asmundur Oddsson & Patrick Sulem & Gardar Sveinbjornsson & Gudny A. Arnadottir & Valgerdur Steinthorsdottir & Gisli H. Halldorsson & Bjarni A. Atlason & Gudjon R. Oskarsson & Hannes Helgason & Henriet, 2023. "Deficit of homozygosity among 1.52 million individuals and genetic causes of recessive lethality," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Jujiao Kang & Yue-Ting Deng & Bang-Sheng Wu & Wei-Shi Liu & Ze-Yu Li & Shitong Xiang & Liu Yang & Jia You & Xiaohong Gong & Tianye Jia & Jin-Tai Yu & Wei Cheng & Jianfeng Feng, 2024. "Whole exome sequencing analysis identifies genes for alcohol consumption," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Mihail Halachev & Viktoria-Eleni Gountouna & Alison Meynert & Gannie Tzoneva & Alan R. Shuldiner & Colin A. Semple & James F. Wilson, 2024. "Regionally enriched rare deleterious exonic variants in the UK and Ireland," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Jung Yeon Lee & Myeong-Kyu Kim & Wonkuk Kim, 2020. "Robust Linear Trend Test for Low-Coverage Next-Generation Sequence Data Controlling for Covariates," Mathematics, MDPI, vol. 8(2), pages 1-14, February.
    5. Guillaume Butler-Laporte & Gundula Povysil & Jack A Kosmicki & Elizabeth T Cirulli & Theodore Drivas & Simone Furini & Chadi Saad & Axel Schmidt & Pawel Olszewski & Urszula Korotko & Mathieu Quinodoz , 2022. "Exome-wide association study to identify rare variants influencing COVID-19 outcomes: Results from the Host Genetics Initiative," PLOS Genetics, Public Library of Science, vol. 18(11), pages 1-26, November.
    6. Remo Monti & Pia Rautenstrauch & Mahsa Ghanbari & Alva Rani James & Matthias Kirchler & Uwe Ohler & Stefan Konigorski & Christoph Lippert, 2022. "Identifying interpretable gene-biomarker associations with functionally informed kernel-based tests in 190,000 exomes," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Marcin Kierczak & Nima Rafati & Julia Höglund & Hadrien Gourlé & Valeria Lo Faro & Daniel Schmitz & Weronica E. Ek & Ulf Gyllensten & Stefan Enroth & Diana Ekman & Björn Nystedt & Torgny Karlsson & Ås, 2022. "Contribution of rare whole-genome sequencing variants to plasma protein levels and the missing heritability," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0275929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.