IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0275546.html
   My bibliography  Save this article

A discrete model for the evaluation of public policies: The case of Colombia during the COVID-19 pandemic

Author

Listed:
  • Alexandra Catano-Lopez
  • Daniel Rojas-Diaz
  • Diana Paola Lizarralde-Bejarano
  • María Eugenia Puerta Yepes

Abstract

In mathematical epidemiology, it is usual to implement compartmental models to study the transmission of diseases, allowing comprehension of the outbreak dynamics. Thus, it is necessary to identify the natural history of the disease and to establish promissory relations between the structure of a mathematical model, as well as its parameters, with control-related strategies (real interventions) and relevant socio-cultural behaviors. However, we identified gaps between the model creation and its implementation for the use of decision-makers for policy design. We aim to cover these gaps by proposing a discrete mathematical model with parameters having intuitive meaning to be implemented to help decision-makers in control policy design. The model considers novel contagion probabilities, quarantine, and diffusion processes to represent the recovery and mortality dynamics. We applied mathematical model for COVID-19 to Colombia and some of its localities; moreover, the model structure could be adapted for other diseases. Subsequently, we implemented it on a web platform (MathCOVID) for the usage of decision-makers to simulate the effect of policies such as lock-downs, social distancing, identification in the contagion network, and connectivity among populations. Furthermore, it was possible to assess the effects of migration and vaccination strategies as time-dependent inputs. Finally, the platform was capable of simulating the effects of applying one or more policies simultaneously.

Suggested Citation

  • Alexandra Catano-Lopez & Daniel Rojas-Diaz & Diana Paola Lizarralde-Bejarano & María Eugenia Puerta Yepes, 2023. "A discrete model for the evaluation of public policies: The case of Colombia during the COVID-19 pandemic," PLOS ONE, Public Library of Science, vol. 18(2), pages 1-29, February.
  • Handle: RePEc:plo:pone00:0275546
    DOI: 10.1371/journal.pone.0275546
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0275546
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0275546&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0275546?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhaohui Su, 2021. "Rigorous Policy-Making Amid COVID-19 and Beyond: Literature Review and Critical Insights," IJERPH, MDPI, vol. 18(23), pages 1-17, November.
    2. Teresa K Yamana & Sasikiran Kandula & Jeffrey Shaman, 2017. "Individual versus superensemble forecasts of seasonal influenza outbreaks in the United States," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sasikiran Kandula & Mark Olfson & Madelyn S Gould & Katherine M Keyes & Jeffrey Shaman, 2023. "Hindcasts and forecasts of suicide mortality in US: A modeling study," PLOS Computational Biology, Public Library of Science, vol. 19(3), pages 1-18, March.
    2. Kathryn S Taylor & James W Taylor, 2022. "Interval forecasts of weekly incident and cumulative COVID-19 mortality in the United States: A comparison of combining methods," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-25, March.
    3. Emrah Gulay & Serkan Aras, 2024. "Does a meta-combining method lead to more accurate forecasts in the decision-making process?," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(3), pages 101-124.
    4. Zixiao Luo & Xiaocan Jia & Junzhe Bao & Zhijuan Song & Huili Zhu & Mengying Liu & Yongli Yang & Xuezhong Shi, 2022. "A Combined Model of SARIMA and Prophet Models in Forecasting AIDS Incidence in Henan Province, China," IJERPH, MDPI, vol. 19(10), pages 1-12, May.
    5. Choi, Heewon & Epstein-Deutsch, Eli, 2024. "Identifying Best Practices for Future Pandemic Preparedness: A Comparative Policy Analysis," SocArXiv 7mwbj, Center for Open Science.
    6. Nicholas G Reich & Craig J McGowan & Teresa K Yamana & Abhinav Tushar & Evan L Ray & Dave Osthus & Sasikiran Kandula & Logan C Brooks & Willow Crawford-Crudell & Graham Casey Gibson & Evan Moore & Reb, 2019. "Accuracy of real-time multi-model ensemble forecasts for seasonal influenza in the U.S," PLOS Computational Biology, Public Library of Science, vol. 15(11), pages 1-19, November.
    7. Fang Guo & Pei Zhang & Vivian Do & Jakob Runge & Kun Zhang & Zheshen Han & Shenxi Deng & Hongli Lin & Sheikh Taslim Ali & Ruchong Chen & Yuming Guo & Linwei Tian, 2024. "Ozone as an environmental driver of influenza," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Sebastian Funk & Anton Camacho & Adam J Kucharski & Rachel Lowe & Rosalind M Eggo & W John Edmunds, 2019. "Assessing the performance of real-time epidemic forecasts: A case study of Ebola in the Western Area region of Sierra Leone, 2014-15," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-17, February.
    9. repec:osf:socarx:7mwbj_v1 is not listed on IDEAS
    10. Prashant Rangarajan & Sandeep K Mody & Madhav Marathe, 2019. "Forecasting dengue and influenza incidences using a sparse representation of Google trends, electronic health records, and time series data," PLOS Computational Biology, Public Library of Science, vol. 15(11), pages 1-24, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0275546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.