Author
Abstract
Identifying differentially expressed genes is difficult because of the small number of available samples compared with the large number of genes. Conventional gene selection methods employing statistical tests have the critical problem of heavy dependence of P-values on sample size. Although the recently proposed principal component analysis (PCA) and tensor decomposition (TD)-based unsupervised feature extraction (FE) has often outperformed these statistical test-based methods, the reason why they worked so well is unclear. In this study, we aim to understand this reason in the context of projection pursuit (PP) that was proposed a long time ago to solve the problem of dimensions; we can relate the space spanned by singular value vectors with that spanned by the optimal cluster centroids obtained from K-means. Thus, the success of PCA- and TD-based unsupervised FE can be understood by this equivalence. In addition to this, empirical threshold adjusted P-values of 0.01 assuming the null hypothesis that singular value vectors attributed to genes obey the Gaussian distribution empirically corresponds to threshold-adjusted P-values of 0.1 when the null distribution is generated by gene order shuffling. For this purpose, we newly applied PP to the three data sets to which PCA and TD based unsupervised FE were previously applied; these data sets treated two topics, biomarker identification for kidney cancers (the first two) and the drug discovery for COVID-19 (the thrid one). Then we found the coincidence between PP and PCA or TD based unsupervised FE is pretty well. Shuffling procedures described above are also successfully applied to these three data sets. These findings thus rationalize the success of PCA- and TD-based unsupervised FE for the first time.
Suggested Citation
Y-h Taguchi & Turki Turki, 2022.
"Projection in genomic analysis: A theoretical basis to rationalize tensor decomposition and principal component analysis as feature selection tools,"
PLOS ONE, Public Library of Science, vol. 17(9), pages 1-20, September.
Handle:
RePEc:plo:pone00:0275472
DOI: 10.1371/journal.pone.0275472
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0275472. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.