Author
Listed:
- Wagner A Barbosa
- Sérgio Luiz E F da Silva
- Erick de la Barra
- João M de Araújo
Abstract
The estimation of physical parameters from data analyses is a crucial process for the description and modeling of many complex systems. Based on Rényi α-Gaussian distribution and patched Green’s function (PGF) techniques, we propose a robust framework for data inversion using a wave-equation based methodology named full-waveform inversion (FWI). From the assumption that the residual seismic data (the difference between the modeled and observed data) obeys the Rényi α-Gaussian probability distribution, we introduce an outlier-resistant criterion to deal with erratic measures in the FWI context, in which the classical FWI based on l2-norm is a particular case. The new misfit function arises from the probabilistic maximum-likelihood method associated with the α-Gaussian distribution. The PGF technique works on the forward modeling process by dividing the computational domain into outside target area and target area, where the wave equation is solved only once on the outside target (before FWI). During the FWI processing, Green’s functions related only to the target area are computed instead of the entire computational domain, saving computational efforts. We show the effectiveness of our proposed approach by considering two distinct realistic P-wave velocity models, in which the first one is inspired in the Kwanza Basin in Angola and the second in a region of great economic interest in the Brazilian pre-salt field. We call our proposal by the abbreviation α-PGF-FWI. The results reveal that the α-PGF-FWI is robust against additive Gaussian noise and non-Gaussian noise with outliers in the limit α → 2/3, being α the Rényi entropic index.
Suggested Citation
Wagner A Barbosa & Sérgio Luiz E F da Silva & Erick de la Barra & João M de Araújo, 2022.
"Full-waveform inversion based on generalized Rényi entropy using patched Green’s function techniques,"
PLOS ONE, Public Library of Science, vol. 17(11), pages 1-27, November.
Handle:
RePEc:plo:pone00:0275416
DOI: 10.1371/journal.pone.0275416
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0275416. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.