IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0275030.html
   My bibliography  Save this article

Joint clustering and prediction approach for travel time prediction

Author

Listed:
  • Hima Elsa Shaji
  • Arun K Tangirala
  • Lelitha Vanajakshi

Abstract

Modeling and prediction of traffic systems is a challenging task due to the complex interactions within the system. Identification of significant regressors and using them to improve travel time predictions is a concept of interest. In previous studies, such regressors were identified offline and were static in nature. In this study, an iterative joint clustering and prediction approach is proposed to accurately predict spatiotemporal patterns in travel time. The clustering module is tied to the prediction module, and a prediction model is trained on each cluster. The combined clustering and prediction are then iterated until a chosen metric is optimized. This orients clusters of data towards prediction while enabling model development on subsets of travel time data with similar prediction complexity. The clusters created using the joint clustering and prediction approach confirmed to the real-world traffic scenario, forming clusters of high travel time at busy intersections and bus stops across the study stretch and forming clusters of low travel time in the sub-urban areas of the city. Further, a comparison of the developed framework with base methods demonstrated a decrease in prediction errors by at least 22.83%. This indicates that creating clusters of data that are sensitive to the quality of predictions using the joint clustering and prediction framework improves the accuracy of travel time predictions. The study also proposes criteria for choosing the best predictions when cluster-based predictions are used.

Suggested Citation

  • Hima Elsa Shaji & Arun K Tangirala & Lelitha Vanajakshi, 2022. "Joint clustering and prediction approach for travel time prediction," PLOS ONE, Public Library of Science, vol. 17(9), pages 1-19, September.
  • Handle: RePEc:plo:pone00:0275030
    DOI: 10.1371/journal.pone.0275030
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0275030
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0275030&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0275030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Julio, Nikolas & Giesen, Ricardo & Lizana, Pedro, 2016. "Real-time prediction of bus travel speeds using traffic shockwaves and machine learning algorithms," Research in Transportation Economics, Elsevier, vol. 59(C), pages 250-257.
    2. Xiaomeng Wang & Ling Peng & Tianhe Chi & Mengzhu Li & Xiaojing Yao & Jing Shao, 2015. "A Hidden Markov Model for Urban-Scale Traffic Estimation Using Floating Car Data," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bisheng He & Yongjun Zhu & Andrea D’Ariano & Keyu Wen & Lufeng Chen, 2023. "Dynamic Relational Graph Convolutional Network for Metro Passenger Flow Forecasting," SN Operations Research Forum, Springer, vol. 4(4), pages 1-27, December.
    2. Feng Mao & Zhiheng Li & Kai Zhang, 2021. "A Comparison of Carbon Dioxide Emissions between Battery Electric Buses and Conventional Diesel Buses," Sustainability, MDPI, vol. 13(9), pages 1-15, May.
    3. Hima Shaji & Lelitha Vanajakshi & Arun Tangirala, 2023. "Effects of Data Characteristics on Bus Travel Time Prediction: A Systematic Study," Sustainability, MDPI, vol. 15(6), pages 1-17, March.
    4. Zbigniew Czapla & Grzegorz Sierpiński, 2023. "Driving and Energy Profiles of Urban Bus Routes Predicted for Operation with Battery Electric Buses," Energies, MDPI, vol. 16(15), pages 1-19, July.
    5. Liping Ge & Malek Sarhani & Stefan Voß & Lin Xie, 2021. "Review of Transit Data Sources: Potentials, Challenges and Complementarity," Sustainability, MDPI, vol. 13(20), pages 1-37, October.
    6. Vasile Dogaru & Claudiu Brandas & Marian Cristescu, 2019. "An Urban System Optimization Model Based on CO 2 Sequestration Index: A Big Data Analytics Approach," Sustainability, MDPI, vol. 11(18), pages 1-14, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0275030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.