Author
Listed:
- Xiangmei Zhang
- Zongyu Hu
- Zhihong Wu
- Hu Chen
- Peng Cheng
Abstract
Immersive projection display system is widely adopted in virtual reality and various exhibition halls. How to maintain high display quality in an immersive projection environment with uneven illumination and the color deviation caused by the inter-reflection of light is still a challenging task. In this paper, we innovatively propose a deep learning-based radiation compensation for an L-shaped projector-camera system. This method employs complex reflection phenomena to simulate the light transport processing in an L-shaped environment, we also designed a Dark-Channel Enhanced-Compensation Net (DECNet) which composed of a convolutional neural network called Compensation Net, a DarkChannelNet and another subnet (such as sensing network) aiming at achieving high-quality reproduction of projected display images. The final output of DECNet is the compensation image to be projected. It is always a critical problem to establish appropriate evaluation and analysis indexes throughout the research of light pollution compensation algorithms. In this paper, PSNR, SSIM, and RMSE are proposed to quantitatively analyze the image quality. The experimental results show that this method has certain advantages in reducing the inter-reflection of the projection plane. And our method could also well replace the traditional process using the backlight transmission matrix. It can be concluded to a certain that this method can be extended to other more complex projection environments with strong scalability and inclusiveness.
Suggested Citation
Xiangmei Zhang & Zongyu Hu & Zhihong Wu & Hu Chen & Peng Cheng, 2022.
"Dark-Channel Enhanced-Compensation Net: An end-to-end inner-reflection compensation method for immersive projection system,"
PLOS ONE, Public Library of Science, vol. 17(11), pages 1-16, November.
Handle:
RePEc:plo:pone00:0274968
DOI: 10.1371/journal.pone.0274968
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0274968. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.