Author
Listed:
- Xiaobo Li
- Ke Li
- Qingpeng Ji
- Feixiang Shen
- Qiang Wu
- Qiuyan Chen
- Liangjing Luo
- Xijia Bian
- Wei Chen
- Diming Lou
Abstract
Shipping emissions have aroused wide concern in the world. In order to promote the implementation of emission regulations, this study develop a ship based sniffing technique to perform remote measurement of the SO2, NOx and CO2 from ships entering and leaving Shanghai port at the open sea. The ship emission prediction model, Smoke diffusion model and source identification model were developed to automatically analyze the emission data and screen the object ship source based on Automatic Identification System (AIS) system. The fueling documents of the detected ship were obtained from maritime sector and the results precision of the sniffer technique was evaluated by comparing the measured Fuel sulfur content (FSC) with actual value deduced from fueling documents. The influences of wind speed and direction, object ship parameters and monitoring distance on the identification of object ship and accuracy of the calculated FSC were thoroughly investigated and the corresponding correction factors under different conditions were deduced. The modified emission factor ratio of CO2 to NOx were proposed in order to improve the accuracy. It is demonstrated that with wind speed higher than 2 m/s and test distance shorter than 400m, the sniffer technique exhibit high efficiency and accuracy for the remote emissions measurement of ship upwind with detection rate higher than 90% and test error of FSC below 15%. To reduce the influence of the wind direction, at least two sniffer systems were required to guarantee that at least one station is in the downwind of the ship lane. Based on the results and discussion, a novel sniffer monitoring system with two buoy based sniffing stations placed close to each side of the ship lane far off shore was proposed to realize the remote monitoring of ship emissions.
Suggested Citation
Xiaobo Li & Ke Li & Qingpeng Ji & Feixiang Shen & Qiang Wu & Qiuyan Chen & Liangjing Luo & Xijia Bian & Wei Chen & Diming Lou, 2022.
"Investigation of sniffer technique on remote measurement of ship emissions: A case study in Shanghai, China,"
PLOS ONE, Public Library of Science, vol. 17(9), pages 1-20, September.
Handle:
RePEc:plo:pone00:0274236
DOI: 10.1371/journal.pone.0274236
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0274236. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.