Author
Listed:
- Moritz K Jansson
- Shelby Yamamoto
Abstract
Background: Observations based on the spread of SARS-CoV-2 early into the COVID-19 pandemic have suggested a reduced burden in tropical regions leading to the assumption of a dichotomy between cold and dry and wet and warm climates. Objectives: Analyzing more than a whole year of COVID-19 infection data, this study intents to refine the understanding of meteorological variables (temperature, humidity, precipitation and cloud coverage) on COVID-19 transmission in settings that experience distinct seasonal changes. Methods and findings: A time stratified case-crossover design was adopted with a conditional Poisson model in combination with a distributed lag nonlinear model to assess the short-term impact of mentioned meteorological factors on COVID-19 infections in five US study sites (New York City (NYC); Marion County, Indiana (MCI); Baltimore and Baltimore County, Maryland (BCM); Franklin County, Ohio (FCO); King County, Washington (KCW)). Higher-than-average temperatures were consistently associated with a decreased relative risk (RR) of COVID-19 infection in four study sites. At 20 degrees Celsius COVID-19 infection was associated with a relative risk of 0.35 (95%CI: 0.20–0.60) in NYC, 1.03 (95%CI:0.57–1.84) in MCI, 0.34 (95%CI: 0.20–0.57) in BCM, 0.52 (95%CI: 0.31–0.87) in FCO and 0.21 (95%CI: 0.10–0.44) in KCW. Higher-than-average humidity levels were associated with an increased relative risk of COVID-19 infection in four study sites. Relative to their respective means, at a humidity level of 15 g/kg (specific humidity) the RR was 5.83 (95%CI: 2.05–16.58) in BCM, at a humidity level of 10 g/kg the RR was 3.44 (95%CI: 1.95–6.01) in KCW. Conclusions: The results of this study suggest opposed effects for higher-than-average temperature and humidity concerning the risk of COVID-19 infection. While a distinct seasonal pattern of COVID-19 has not yet emerged, warm and humid weather should not be generally regarded as a time of reduced risk of COVID-19 infections.
Suggested Citation
Moritz K Jansson & Shelby Yamamoto, 2022.
"The effect of temperature, humidity, precipitation and cloud coverage on the risk of COVID-19 infection in temperate regions of the USA—A case-crossover study,"
PLOS ONE, Public Library of Science, vol. 17(9), pages 1-21, September.
Handle:
RePEc:plo:pone00:0273511
DOI: 10.1371/journal.pone.0273511
Download full text from publisher
References listed on IDEAS
- repec:plo:pone00:0238339 is not listed on IDEAS
Full references (including those not matched with items on IDEAS)
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0273511. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.