IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0273312.html
   My bibliography  Save this article

Computations of the shear stresses distribution experienced by passive particles as they circulate in turbulent flow: A case study for vWF protein molecules

Author

Listed:
  • Oanh L Pham
  • Samuel E Feher
  • Quoc T Nguyen
  • Dimitrios V Papavassiliou

Abstract

The stress distribution along the trajectories of passive particles released in turbulent flow were computed with the use of Lagrangian methods and direct numerical simulations. The flow fields selected were transitional Poiseuille-Couette flow situations found in ventricular assist devices and turbulent flows at conditions found in blood pumps. The passive particle properties were selected to represent molecules of the von Willebrand factor (vWF) protein. Damage to the vWF molecule can cause disease, most often related to hemostasis. The hydrodynamic shear stresses along the trajectories of the particles were calculated and the changes in the distribution of stresses were determined for proteins released in different locations in the flow field and as a function of exposure time. The stress distributions indicated that even when the average applied stress was within a safe operating regime, the proteins spent part of their trajectories in flow areas of damaging stress. Further examination showed that the history of the distribution of stresses applied on the vWF molecules, rather than the average, should be used to evaluate hydrodynamically-induced damage.

Suggested Citation

  • Oanh L Pham & Samuel E Feher & Quoc T Nguyen & Dimitrios V Papavassiliou, 2022. "Computations of the shear stresses distribution experienced by passive particles as they circulate in turbulent flow: A case study for vWF protein molecules," PLOS ONE, Public Library of Science, vol. 17(8), pages 1-19, August.
  • Handle: RePEc:plo:pone00:0273312
    DOI: 10.1371/journal.pone.0273312
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0273312
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0273312&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0273312?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hongxia Fu & Yan Jiang & Darren Yang & Friedrich Scheiflinger & Wesley P. Wong & Timothy A. Springer, 2017. "Flow-induced elongation of von Willebrand factor precedes tension-dependent activation," Nature Communications, Nature, vol. 8(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaowei Liu & Haipei Liu & Andrés M. Vera & Byeongseon Yang & Philip Tinnefeld & Michael A. Nash, 2024. "Engineering an artificial catch bond using mechanical anisotropy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Narges Ahmadi & Jieun Lee & Chirag Batukbhai Godiya & Jong-Man Kim & Bum Jun Park, 2024. "A single-particle mechanofluorescent sensor," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Anna K. Regt & Cordell J. Clark & Charles L. Asbury & Sue Biggins, 2022. "Tension can directly suppress Aurora B kinase-triggered release of kinetochore-microtubule attachments," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0273312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.