Author
Listed:
- Alexander P Schwarz
- Veronika A Nikitina
- Darya U Krytskaya
- Ksenia P Shcherbakova
- Alexander N Trofimov
Abstract
Reverse transcription followed by quantitative (real-time) polymerase chain reaction (RT-qPCR) has become the gold standard in mRNA expression analysis. However, it requires an accurate choice of reference genes for adequate normalization. The aim of this study was to validate the reference genes for qPCR experiments in the brain of rats in the model of mild ketosis established through supplementation with medium-chain triglycerides (MCT) and intermittent fasting. This approach allows to reproduce certain neuroprotective effects of the classical ketogenic diet while avoiding its adverse effects. Ketogenic treatment targets multiple metabolic pathways, which may affect the reference gene expression. The standard chow of adult Wistar rats was supplemented with MCT (2 ml/kg orogastrically, during 6 h of fasting) or water (equivolume) for 1 month. The mRNA expression of 9 housekeeping genes (Actb, B2m, Gapdh, Hprt1, Pgk1, Ppia, Rpl13a, Sdha, Ywhaz) in the medial prefrontal cortex, dorsal and ventral hippocampus was measured by RT-qPCR. Using the RefFinder® online tool, we have found that the reference gene stability ranking strongly depended on the analyzed brain region. The most stably expressed reference genes were found to be Ppia, Actb, and Rpl13a in the medial prefrontal cortex; Rpl13a, Ywhaz, and Pgk1 in the dorsal hippocampus; Ywhaz, Sdha, and Ppia in the ventral hippocampus. The B2m was identified as an invalid reference gene in the ventral hippocampus, while Sdha, Actb, and Gapdh were unstable in the dorsal hippocampus. The stabilities of the examined reference genes were lower in the dorsal hippocampus compared to the ventral hippocampus and the medial prefrontal cortex. When normalized to the three most stably expressed reference genes, the Gapdh mRNA was upregulated, while the Sdha mRNA was downregulated in the medial prefrontal cortex of MCT-fed animals. Thus, the expression stability of reference genes strongly depends on the examined brain regions. The dorsal and ventral hippocampal areas differ in reference genes stability rankings, which should be taken into account in the RT-qPCR experimental design.
Suggested Citation
Alexander P Schwarz & Veronika A Nikitina & Darya U Krytskaya & Ksenia P Shcherbakova & Alexander N Trofimov, 2023.
"Reference gene expression stability within the rat brain under mild intermittent ketosis induced by supplementation with medium-chain triglycerides,"
PLOS ONE, Public Library of Science, vol. 18(2), pages 1-14, February.
Handle:
RePEc:plo:pone00:0273224
DOI: 10.1371/journal.pone.0273224
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0273224. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.