IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0272861.html
   My bibliography  Save this article

Boosting k-means clustering with symbiotic organisms search for automatic clustering problems

Author

Listed:
  • Abiodun M Ikotun
  • Absalom E Ezugwu

Abstract

Kmeans clustering algorithm is an iterative unsupervised learning algorithm that tries to partition the given dataset into k pre-defined distinct non-overlapping clusters where each data point belongs to only one group. However, its performance is affected by its sensitivity to the initial cluster centroids with the possibility of convergence into local optimum and specification of cluster number as the input parameter. Recently, the hybridization of metaheuristics algorithms with the K-Means algorithm has been explored to address these problems and effectively improve the algorithm’s performance. Nonetheless, most metaheuristics algorithms require rigorous parameter tunning to achieve an optimum result. This paper proposes a hybrid clustering method that combines the well-known symbiotic organisms search algorithm with K-Means using the SOS as a global search metaheuristic for generating the optimum initial cluster centroids for the K-Means. The SOS algorithm is more of a parameter-free metaheuristic with excellent search quality that only requires initialising a single control parameter. The performance of the proposed algorithm is investigated by comparing it with the classical SOS, classical K-means and other existing hybrids clustering algorithms on eleven (11) UCI Machine Learning Repository datasets and one artificial dataset. The results from the extensive computational experimentation show improved performance of the hybrid SOSK-Means for solving automatic clustering compared to the standard K-Means, symbiotic organisms search clustering methods and other hybrid clustering approaches.

Suggested Citation

  • Abiodun M Ikotun & Absalom E Ezugwu, 2022. "Boosting k-means clustering with symbiotic organisms search for automatic clustering problems," PLOS ONE, Public Library of Science, vol. 17(8), pages 1-33, August.
  • Handle: RePEc:plo:pone00:0272861
    DOI: 10.1371/journal.pone.0272861
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0272861
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0272861&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0272861?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mohammed Abdullahi & Md Asri Ngadi, 2016. "Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing Environment," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-29, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohit Agarwal & Gur Mauj Saran Srivastava, 2018. "Genetic Algorithm-Enabled Particle Swarm Optimization (PSOGA)-Based Task Scheduling in Cloud Computing Environment," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1237-1267, July.
    2. Jianguo Zheng & Yilin Wang, 2021. "A Hybrid Multi-Objective Bat Algorithm for Solving Cloud Computing Resource Scheduling Problems," Sustainability, MDPI, vol. 13(14), pages 1-25, July.
    3. Muhammad Shuaib Qureshi & Muhammad Bilal Qureshi & Muhammad Fayaz & Wali Khan Mashwani & Samir Brahim Belhaouari & Saima Hassan & Asadullah Shah, 2020. "A comparative analysis of resource allocation schemes for real-time services in high-performance computing systems," International Journal of Distributed Sensor Networks, , vol. 16(8), pages 15501477209, August.
    4. Muhammad Sulaiman & Ashfaq Ahmad & Asfandyar Khan & Shakoor Muhammad, 2018. "Hybridized Symbiotic Organism Search Algorithm for the Optimal Operation of Directional Overcurrent Relays," Complexity, Hindawi, vol. 2018, pages 1-11, January.
    5. Yan Zeng & Wei Wang & Yong Ding & Jilin Zhang & Yongjian Ren & Guangzheng Yi, 2022. "Adaptive Distributed Parallel Training Method for a Deep Learning Model Based on Dynamic Critical Paths of DAG," Mathematics, MDPI, vol. 10(24), pages 1-21, December.
    6. Syed Hamid Hussain Madni & Muhammad Shafie Abd Latiff & Mohammed Abdullahi & Shafi’i Muhammad Abdulhamid & Mohammed Joda Usman, 2017. "Performance comparison of heuristic algorithms for task scheduling in IaaS cloud computing environment," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-26, May.
    7. Hui Zhai & Jia Wang, 2021. "Automatic deployment system of computer program application based on cloud computing," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(4), pages 731-740, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0272861. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.