Author
Listed:
- Tasmia Rahman Tumpa
- Shelley N Acuff
- Jens Gregor
- Yong Bradley
- Yitong Fu
- Dustin R Osborne
Abstract
Objectives: Positron emission tomography (PET) is susceptible to patient movement during a scan. Head motion is a continuing problem for brain PET imaging and diagnostic assessments. Physical head restraints and external motion tracking systems are most commonly used to address to this issue. Data-driven methods offer substantial advantages, such as retroactive processing but typically require manual interaction for robustness. In this work, we introduce a time-of-flight (TOF) weighted positron emission particle tracking (PEPT) algorithm that facilitates fully automated, data-driven head motion detection and subsequent automated correction of the raw listmode data. Materials methods: We used our previously published TOF-PEPT algorithm Dustin Osborne et al. (2017), Tasmia Rahman Tumpa et al., Tasmia Rahman Tumpa et al. (2021) to automatically identify frames where the patient was near-motionless. The first such static frame was used as a reference to which subsequent static frames were registered. The underlying rigid transformations were estimated using weak radioactive point sources placed on radiolucent glasses worn by the patient. Correction of raw event data were achieved by tracking the point sources in the listmode data which was then repositioned to allow reconstruction of a single image. To create a “gold standard” for comparison purposes, frame-by-frame image registration based correction was implemented. The original listmode data was used to reconstruct an image for each static frame detected by our algorithm and then applying manual landmark registration and external software to merge these into a single image. Results: We report on five patient studies. The TOF-PEPT algorithm was configured to detect motion using a 500 ms window. Our event-based correction produced images that were visually free of motion artifacts. Comparison of our algorithm to a frame-based image registration approach produced results that were nearly indistinguishable. Quantitatively, Jaccard similarity indices were found to be in the range of 85-98% for the former and 84-98% for the latter when comparing the static frame images with the reference frame counterparts. Discussion: We have presented a fully automated data-driven method for motion detection and correction of raw listmode data. Easy to implement, the approach achieved high temporal resolution and reliable performance for head motion correction. Our methodology provides a mechanism by which patient motion incurred during imaging can be assessed and corrected post hoc.
Suggested Citation
Tasmia Rahman Tumpa & Shelley N Acuff & Jens Gregor & Yong Bradley & Yitong Fu & Dustin R Osborne, 2022.
"Data-driven head motion correction for PET using time-of-flight and positron emission particle tracking techniques,"
PLOS ONE, Public Library of Science, vol. 17(8), pages 1-15, August.
Handle:
RePEc:plo:pone00:0272768
DOI: 10.1371/journal.pone.0272768
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0272768. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.