Author
Listed:
- Canlin Li
- Pengcheng Gao
- Jinhua Liu
- Shun Song
- Lihua Bi
Abstract
Existing learning-based methods for low-light image enhancement contain a large number of redundant features, the enhanced images lack detail and have strong noises. Some methods try to combine the pyramid structure to learn features from coarse to fine, but the inconsistency of the pyramid structure leads to luminance, color and texture deviations in the enhanced images. In addition, these methods are usually computationally complex and require high computational resource requirements. In this paper, we propose an efficient adaptive feature aggregation network (EAANet) for low-light image enhancement. Our model adopts a pyramid structure and includes multiple multi-scale feature aggregation block (MFAB) and one adaptive feature aggregation block (AFAB). MFAB is proposed to be embedded into each layer of the pyramid structure to fully extract features and reduce redundant features, while the AFAB is proposed for overcome the inconsistency of the pyramid structure. EAANet is very lightweight, with low device requirements and a quick running time. We conducted an extensive comparison with some state-of-the-art methods in terms of PSNR, SSIM, parameters, computations and running time on LOL and MIT5K datasets, and the experiments show that the proposed method has significant advantages in terms of comprehensive performance. The proposed method reconstructs images with richer color and texture, and the noises is effectively suppressed.
Suggested Citation
Canlin Li & Pengcheng Gao & Jinhua Liu & Shun Song & Lihua Bi, 2022.
"Efficient adaptive feature aggregation network for low-light image enhancement,"
PLOS ONE, Public Library of Science, vol. 17(8), pages 1-20, August.
Handle:
RePEc:plo:pone00:0272398
DOI: 10.1371/journal.pone.0272398
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0272398. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.