Author
Abstract
We aimed to develop prediction models for depression among U.S. adults with hypertension using various machine learning (ML) approaches. Moreover, we analyzed the mechanisms of the developed models. This cross-sectional study included 8,628 adults with hypertension (11.3% with depression) from the National Health and Nutrition Examination Survey (2011–2020). We selected several significant features using feature selection methods to build the models. Data imbalance was managed with random down-sampling. Six different ML classification methods implemented in the R package caret—artificial neural network, random forest, AdaBoost, stochastic gradient boosting, XGBoost, and support vector machine—were employed with 10-fold cross-validation for predictions. Model performance was assessed by examining the area under the receiver operating characteristic curve (AUC), accuracy, precision, sensitivity, specificity, and F1-score. For an interpretable algorithm, we used the variable importance evaluation function in caret. Of all classification models, artificial neural network trained with selected features (n = 30) achieved the highest AUC (0.813) and specificity (0.780) in predicting depression. Support vector machine predicted depression with the highest accuracy (0.771), precision (0.969), sensitivity (0.774), and F1-score (0.860). The most frequent and important features contributing to the models included the ratio of family income to poverty, triglyceride level, white blood cell count, age, sleep disorder status, the presence of arthritis, hemoglobin level, marital status, and education level. In conclusion, ML algorithms performed comparably in predicting depression among hypertensive populations. Furthermore, the developed models shed light on variables’ relative importance, paving the way for further clinical research.
Suggested Citation
Chiyoung Lee & Heewon Kim, 2022.
"Machine learning-based predictive modeling of depression in hypertensive populations,"
PLOS ONE, Public Library of Science, vol. 17(7), pages 1-17, July.
Handle:
RePEc:plo:pone00:0272330
DOI: 10.1371/journal.pone.0272330
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0272330. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.