Author
Listed:
- Mengmeng Chen
- Mayire Ibrayim
- Askar Hamdulla
Abstract
With the advent of the era of artificial intelligence, text detection is widely used in the real world. In text detection, due to the limitation of the receptive field of the neural network, most existing scene text detection methods cannot accurately detect small target text instances in any direction, and the detection rate of mutually adhering text instances is low, which is prone to false detection. To tackle such difficulties, in this paper, we propose a new feature pyramid network for scene text detection, Cross-Scale Attention Aggregation Feature Pyramid Network (CSAA-FPN). Specifically, we use a Attention Aggregation Feature Module (AAFM) to enhance features, which not only solves the problem of weak features and small receptive fields extracted by lightweight networks but also better handles multi-scale information and accurately separate adjacent text instances. An attention module CBAM is introduced to focus on effective information so that the output feature layer has richer and more accurate information. Furthermore, we design an Adaptive Fusion Module (AFM), which weights the output features and pays attention to the pixel information to further refine the features. Experiments conducted on CTW1500, Total-Text, ICDAR2015, and MSRA-TD500 have demonstrated the superiority of this model.
Suggested Citation
Mengmeng Chen & Mayire Ibrayim & Askar Hamdulla, 2022.
"AAF-Net: Scene text detection based on attention aggregation features,"
PLOS ONE, Public Library of Science, vol. 17(8), pages 1-21, August.
Handle:
RePEc:plo:pone00:0272322
DOI: 10.1371/journal.pone.0272322
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0272322. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.