Author
Listed:
- Blanca Ríos-Touma
- Francisco Cuesta
- Ernesto Rázuri-Gonzales
- Ralph Holzenthal
- Andrea Tapia
- Marco Calderón-Loor
Abstract
Aquatic insects in the order Trichoptera are extremely diverse in number of species and their trophic roles. However, their distribution and diversity patterns are poorly known in the Neotropics, including the species restricted to tropical mountain ecosystems. Recent studies in tropical mountains have shown high levels of endemism of aquatic insects and changes in the composition of communities over short distances. Still, the incidence of environmental filters that explain such patterns has not been addressed quantitatively. Given the relevance of understanding Trichoptera spatial diversity patterns to prioritize conservation areas for freshwaters, as well as to obtain baseline information to predict changes in aquatic communities facing global environmental changes, we assessed the species distribution and assemblages of caddisflies along an elevational gradient from 600 to 3,600 m a.s.l. on the equatorial Andes. In this area, we had long-term continuous climate data with hourly resolution. We collected adult caddisflies in seven localities along this gradient using light traps. We sampled each locality for two hours after sunset for three consecutive days. All specimens collected were identified to species or morphospecies. Our results showed an increase in species and genera numbers with decreasing altitude, albeit no significant. Minimum air temperature is the main environmental variable explaining Trichoptera community assemblages. β‐diversity (taxon turnover among sites), as opposed to species richness, increased with altitude and showed a bimodal distribution along the elevation gradient for both genera and species assemblages, which resulted in a significant shift in community composition of species and genera at 2,000 m a.s.l. Our null-models confirm the observed patterns of B-diversity are non-random and suggest a strong environmental filtering of tropical caddisflies community assemblies and turnover. Geographic distance coupled with changes in environmental conditions along the elevation gradient explained a high percentage of community variance, as documented for other taxa (e.g., vascular plants), suggesting the importance of securing habitat connectivity along the altitudinal gradient to protect aquatic insect diversity effectively.
Suggested Citation
Blanca Ríos-Touma & Francisco Cuesta & Ernesto Rázuri-Gonzales & Ralph Holzenthal & Andrea Tapia & Marco Calderón-Loor, 2022.
"Elevational biodiversity gradients in the Neotropics: Perspectives from freshwater caddisflies (Insecta: Trichoptera),"
PLOS ONE, Public Library of Science, vol. 17(8), pages 1-17, August.
Handle:
RePEc:plo:pone00:0272229
DOI: 10.1371/journal.pone.0272229
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0272229. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.