Author
Listed:
- Ittikon Thammachantuek
- Mahasak Ketcham
Abstract
In this article, a new path planning algorithm is proposed. The algorithm is developed on the basis of the algorithm for finding the best value using multi-objective evolutionary particle swarm optimization, known as the MOEPSO. The proposed algorithm is used for the path planning of autonomous mobile robots in both static and dynamic environments. The paths must follow the determined criteria, namely, the shortest path, the smoothest path, and the safest path. In addition, the algorithm considers the degree of mutation, crossover, and selection to improve the efficiency of each particle. Furthermore, a weight adjustment method is proposed for the movement of particles in each iteration to increase the chance of finding the best fit solution. In addition, a method to manage feasible waypoints within the radius of obstacles or blocked by obstacles is proposed using a simple random method. The main contribution of this article is the development of a new path planning algorithm for autonomous mobile robots. This algorithm can build the shortest, smoothest, and safest paths for robots. It also offers an evolutionary operator to prevent falling into a local optimum. The proposed algorithm uses path finding simulation in a static environment and dynamic environment in conjunction with comparing performance to path planning algorithms in previous studies. In the static environment (4 obstacles), the shortest path obtained from the proposed algorithm is 14.3222 m. In the static environment (5 obstacles), the shortest path obtained from the proposed algorithm is 14.5989 m. In the static environment (6 obstacles), the shortest path obtained from the proposed algorithm is 14.4743 m. In the dynamic environment the shortest path is 12.2381 m. The results show that the proposed algorithm can determine the paths from the starting point to the destination with the shortest distances that require the shortest processing time.
Suggested Citation
Ittikon Thammachantuek & Mahasak Ketcham, 2022.
"Path planning for autonomous mobile robots using multi-objective evolutionary particle swarm optimization,"
PLOS ONE, Public Library of Science, vol. 17(8), pages 1-48, August.
Handle:
RePEc:plo:pone00:0271924
DOI: 10.1371/journal.pone.0271924
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0271924. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.