Author
Listed:
- Shengyue Chen
- Zhenyu Zhang
- Juanjuan Lin
- Jinliang Huang
Abstract
Accurate and sufficient water quality data is essential for watershed management and sustainability. Machine learning models have shown great potentials for estimating water quality with the development of online sensors. However, accurate estimation is challenging because of uncertainties related to models used and data input. In this study, random forest (RF), support vector machine (SVM), and back-propagation neural network (BPNN) models are developed with three sampling frequency datasets (i.e., 4-hourly, daily, and weekly) and five conventional indicators (i.e., water temperature (WT), hydrogen ion concentration (pH), electrical conductivity (EC), dissolved oxygen (DO), and turbidity (TUR)) as surrogates to individually estimate riverine total phosphorus (TP), total nitrogen (TN), and ammonia nitrogen (NH4+-N) in a small-scale coastal watershed. The results show that the RF model outperforms the SVM and BPNN machine learning models in terms of estimative performance, which explains much of the variation in TP (79 ± 1.3%), TN (84 ± 0.9%), and NH4+-N (75 ± 1.3%), when using the 4-hourly sampling frequency dataset. The higher sampling frequency would help the RF obtain a significantly better performance for the three nutrient estimation measures (4-hourly > daily > weekly) for R2 and NSE values. WT, EC, and TUR were the three key input indicators for nutrient estimations in RF. Our study highlights the importance of high-frequency data as input to machine learning model development. The RF model is shown to be viable for riverine nutrient estimation in small-scale watersheds of important local water security.
Suggested Citation
Shengyue Chen & Zhenyu Zhang & Juanjuan Lin & Jinliang Huang, 2022.
"Machine learning-based estimation of riverine nutrient concentrations and associated uncertainties caused by sampling frequencies,"
PLOS ONE, Public Library of Science, vol. 17(7), pages 1-21, July.
Handle:
RePEc:plo:pone00:0271458
DOI: 10.1371/journal.pone.0271458
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0271458. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.