Author
Listed:
- Adam Menkara
- Ahmad Faryami
- Daniel Viar
- Carolyn Harris
Abstract
Pulsatile arterial blood flow plays an important role in vascular system mechanobiology, especially in the study of mechanisms of pathology. Limitations in cost, time, sample size, and control across current in-vitro and in-vivo methods limit future exploration of novel treatments. Presented is the verification of a novel reciprocating positive displacement pump aimed at resolving these issues through the simulation of human ocular, human fingertip and skin surface, human cerebral, and rodent spleen organ systems. A range of pulsatile amplitudes, frequencies, and flow rates were simulated using pumps made of 3D printed parts incorporating a tubing system, check valve and proprietary software. Volumetric analysis of 430 total readings across a flow range of 0.025ml/min to 16ml/min determined that the pump had a mean absolute error and mean relative error of 0.041 ml/min and 1.385%, respectively. Linear regression analysis compared to expected flow rate across the full flow range yielded an R2 of 0.9996. Waveform analysis indicated that the pump could recreate accurate beat frequency for flow ranges above 0.06ml/min at 70BPM. The verification of accurate pump output opens avenues for the development of novel long-term in-vitro benchtop models capable of looking at fluid flow scenarios previously unfeasible, including low volume-high shear rate pulsatile flow.
Suggested Citation
Adam Menkara & Ahmad Faryami & Daniel Viar & Carolyn Harris, 2022.
"Applications of a novel reciprocating positive displacement pump in the simulation of pulsatile arterial blood flow,"
PLOS ONE, Public Library of Science, vol. 17(12), pages 1-18, December.
Handle:
RePEc:plo:pone00:0270780
DOI: 10.1371/journal.pone.0270780
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0270780. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.