IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0270681.html
   My bibliography  Save this article

Predicting terrorist attacks in the United States using localized news data

Author

Listed:
  • Steven J Krieg
  • Christian W Smith
  • Rusha Chatterjee
  • Nitesh V Chawla

Abstract

Terrorism is a major problem worldwide, causing thousands of fatalities and billions of dollars in damage every year. To address this threat, we propose a novel feature representation method and evaluate machine learning models that learn from localized news data in order to predict whether a terrorist attack will occur on a given calendar date and in a given state. The best model (a Random Forest aided by a novel variable-length moving average method) achieved area under the receiver operating characteristic (AUROC) of ≥ 0.667 (statistically significant w.r.t. random guessing with p ≤ .0001) on four of the five states that were impacted most by terrorism between 2015 and 2018. These results demonstrate that treating terrorism as a set of independent events, rather than as a continuous process, is a fruitful approach—especially when historical events are sparse and dissimilar—and that large-scale news data contains information that is useful for terrorism prediction. Our analysis also suggests that predictive models should be localized (i.e., state models should be independently designed, trained, and evaluated) and that the characteristics of individual attacks (e.g., responsible group or weapon type) were not correlated with prediction success. These contributions provide a foundation for the use of machine learning in efforts against terrorism in the United States and beyond.

Suggested Citation

  • Steven J Krieg & Christian W Smith & Rusha Chatterjee & Nitesh V Chawla, 2022. "Predicting terrorist attacks in the United States using localized news data," PLOS ONE, Public Library of Science, vol. 17(6), pages 1-26, June.
  • Handle: RePEc:plo:pone00:0270681
    DOI: 10.1371/journal.pone.0270681
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0270681
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0270681&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0270681?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. Irfan Uddin & Nazir Zada & Furqan Aziz & Yousaf Saeed & Asim Zeb & Syed Atif Ali Shah & Mahmoud Ahmad Al-Khasawneh & Marwan Mahmoud, 2020. "Prediction of Future Terrorist Activities Using Deep Neural Networks," Complexity, Hindawi, vol. 2020, pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raj Bridgelall, 2022. "Applying unsupervised machine learning to counterterrorism," Journal of Computational Social Science, Springer, vol. 5(2), pages 1099-1128, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0270681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.