Author
Listed:
- William J Severud
- Sergey S Berg
- Connor A Ernst
- Glenn D DelGiudice
- Seth A Moore
- Steve K Windels
- Ron A Moen
- Edmund J Isaac
- Tiffany M Wolf
Abstract
Given recent and abrupt declines in the abundance of moose (Alces alces) throughout parts of Minnesota and elsewhere in North America, accurately estimating statewide population trends and demographic parameters is a high priority for their continued management and conservation. Statistical population reconstruction using integrated population models provides a flexible framework for combining information from multiple studies to produce robust estimates of population abundance, recruitment, and survival. We used this framework to combine aerial survey data and survival data from telemetry studies to recreate trends and demographics of moose in northeastern Minnesota, USA, from 2005 to 2020. Statistical population reconstruction confirmed the sharp decline in abundance from an estimated 7,841 (90% CI = 6,702–8,933) in 2009 to 3,386 (90% CI = 2,681–4,243) animals in 2013, but also indicated that abundance has remained relatively stable since then, except for a slight decline to 3,163 (90% CI = 2,403–3,718) in 2020. Subsequent stochastic projection of the population from 2021 to 2030 suggests that this modest decline will continue for the next 10 years. Both annual adult survival and per-capita recruitment (number of calves that survived to 1 year per adult female alive during the previous year) decreased substantially in years 2005 and 2019, from 0.902 (SE = 0.043) to 0.689 (SE = 0.061) and from 0.386 (SE = 0.030) to 0.303 (SE = 0.051), respectively. Sensitivity analysis revealed that moose abundance was more sensitive to fluctuations in adult survival than recruitment; thus, we conclude that the steep decline in 2013 was driven primarily by decreasing adult survival. Our analysis demonstrates the potential utility of using statistical population reconstruction to monitor moose population trends and to identify population declines more quickly. Future studies should focus on providing better estimates of per-capita recruitment, using pregnancy rates and calf survival, which can then be incorporated into reconstruction models to help improve estimates of population change through time.
Suggested Citation
William J Severud & Sergey S Berg & Connor A Ernst & Glenn D DelGiudice & Seth A Moore & Steve K Windels & Ron A Moen & Edmund J Isaac & Tiffany M Wolf, 2022.
"Statistical population reconstruction of moose (Alces alces) in northeastern Minnesota using integrated population models,"
PLOS ONE, Public Library of Science, vol. 17(9), pages 1-17, September.
Handle:
RePEc:plo:pone00:0270615
DOI: 10.1371/journal.pone.0270615
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0270615. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.