Author
Listed:
- Sitthichok Chaichulee
- Chissanupong Promchai
- Tanyamai Kaewkomon
- Chanon Kongkamol
- Thammasin Ingviya
- Pasuree Sangsupawanich
Abstract
Allergic reactions to medication range from mild to severe or even life-threatening. Proper documentation of patient allergy information is critical for safe prescription, avoiding drug interactions, and reducing healthcare costs. Allergy information is regularly obtained during the medical interview, but is often poorly documented in electronic health records (EHRs). While many EHRs allow for structured adverse drug reaction (ADR) reporting, a free-text entry is still common. The resulting information is neither interoperable nor easily reusable for other applications, such as clinical decision support systems and prescription alerts. Current approaches require pharmacists to review and code ADRs documented by healthcare professionals. Recently, the effectiveness of machine algorithms in natural language processing (NLP) has been widely demonstrated. Our study aims to develop and evaluate different NLP algorithms that can encode unstructured ADRs stored in EHRs into institutional symptom terms. Our dataset consists of 79,712 pharmacist-reviewed drug allergy records. We evaluated three NLP techniques: Naive Bayes—Support Vector Machine (NB-SVM), Universal Language Model Fine-tuning (ULMFiT), and Bidirectional Encoder Representations from Transformers (BERT). We tested different general-domain pre-trained BERT models, including mBERT, XLM-RoBERTa, and WanchanBERTa, as well as our domain-specific AllergyRoBERTa, which was pre-trained from scratch on our corpus. Overall, BERT models had the highest performance. NB-SVM outperformed ULMFiT and BERT for several symptom terms that are not frequently coded. The ensemble model achieved an exact match ratio of 95.33%, a F1 score of 98.88%, and a mean average precision of 97.07% for the 36 most frequently coded symptom terms. The model was then further developed into a symptom term suggestion system and achieved a Krippendorff’s alpha agreement coefficient of 0.7081 in prospective testing with pharmacists. Some degree of automation could both accelerate the availability of allergy information and reduce the efforts for human coding.
Suggested Citation
Sitthichok Chaichulee & Chissanupong Promchai & Tanyamai Kaewkomon & Chanon Kongkamol & Thammasin Ingviya & Pasuree Sangsupawanich, 2022.
"Multi-label classification of symptom terms from free-text bilingual adverse drug reaction reports using natural language processing,"
PLOS ONE, Public Library of Science, vol. 17(8), pages 1-22, August.
Handle:
RePEc:plo:pone00:0270595
DOI: 10.1371/journal.pone.0270595
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0270595. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.