Author
Listed:
- Zhengyun Fang
- Hongbin Wang
- Shilin Li
- Yi Hu
- Xingbo Han
Abstract
In recent years, small objects detection has received extensive attention from scholars for its important value in application. Some effective methods for small objects detection have been proposed. However, the data collected in real scenes are often foggy images, so the models trained with these methods are difficult to extract discriminative object features from such images. In addition, the existing small objects detection algorithms ignore the texture information and high-level semantic information of tiny objects, which limits the improvement of detection performance. Aiming at the above problems, this paper proposes a texture and semantic integrated small objects detection in foggy scenes. The algorithm focuses on extracting discriminative features unaffected by the environment, and obtaining texture information and high-level semantic information of small objects. Specifically, considering the adverse impact of foggy images on recognition performance, a knowledge guidance module is designed, and the discriminative features extracted from clear images by the model are used to guide the network to learn foggy images. Second, the features of high-resolution images and low-resolution images are extracted, and the adversarial learning method is adopted to train the model to give the network the ability to obtain the texture information of tiny objects from low-resolution images. Finally, an attention mechanism is constructed between feature maps of the same scale and different scales to further enrich the high-level semantic information of small objects. A large number of experiments have been conducted on data sets such as “Cityscape to Foggy” and “CoCo”. The mean prediction accuracy (mAP) has reached 46.2% on “Cityscape to Fogg”, and 33.3% on “CoCo”, which fully proves the effectiveness and superiority of the proposed method.
Suggested Citation
Zhengyun Fang & Hongbin Wang & Shilin Li & Yi Hu & Xingbo Han, 2022.
"Texture and semantic integrated small objects detection in foggy scenes,"
PLOS ONE, Public Library of Science, vol. 17(8), pages 1-18, August.
Handle:
RePEc:plo:pone00:0270356
DOI: 10.1371/journal.pone.0270356
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0270356. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.