Author
Listed:
- Mert Cihan
- Miguel A Andrade-Navarro
Abstract
Gene activity is controlled by multiple molecular mechanisms, for instance through transcription factors or by microRNAs (miRNAs), among others. Established bioinformatics tools for the prediction of miRNA target genes face the challenge of ensuring accuracy, due to high false positive rates. Further, these tools present poor overlap. However, we demonstrated that it is possible to filter good predictions of miRNA targets from the bulk of all predictions by using information from the gene regulatory network. Here, we take advantage of this strategy that selects a large subset of predicted microRNA binding sites as more likely to possess less false-positives because of their over-representation in RE1 silencing transcription factor (REST)-regulated genes from the background of TargetScanHuman 7.2 predictions to identify useful features for the prediction of microRNA targets. These enriched miRNA families would have silencing activity for neural transcripts overlapping the repressive activity on neural genes of REST. We analyze properties of associated microRNA binding sites and contrast the outcome to the background. We found that the selected subset presents significant differences respect to the background: (i) lower GC-content in the vicinity of the predicted miRNA binding site, (ii) more target genes with multiple identical microRNA binding sites and (iii) a higher density of predicted microRNA binding sites close to the 3’ terminal end of the 3’-UTR. These results suggest that network selection of miRNA-mRNA pairs could provide useful features to improve microRNA target prediction.
Suggested Citation
Mert Cihan & Miguel A Andrade-Navarro, 2022.
"Detection of features predictive of microRNA targets by integration of network data,"
PLOS ONE, Public Library of Science, vol. 17(6), pages 1-14, June.
Handle:
RePEc:plo:pone00:0269731
DOI: 10.1371/journal.pone.0269731
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0269731. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.