Author
Listed:
- Weiqiang Di
- ZhiHao Wu
- Youfang Lin
Abstract
Item co-occurrence is an important pattern in recommendation. Due to the difference in correlation, the matching degrees between the target and historical items vary. The higher the matching degree, the greater probability they co-occur. Recently, the recommendation performance has been greatly improved by leveraging item relations. As an important bond imposed by relations, these connected items should have a strong correlation in the calculation of certain measures. This kind of correlation can be the biased knowledge that benefits parameter training. Specifically, we focus on tuples containing the target item and latest relational items that have relations such as complement or substitute with the target item in user’s behavior sequence. Such close relations mean the matching degrees between relational items and historical items should be highly affected by that of the target item and historical items. For example, given a relational item having relation complement with the target item, if the target item has high matching degrees with some items in user’s behavior sequence, this complementary item should behave similarly for the co-occurrence of complementary items. Under guidance of the above thought, in this work, we propose a target-relation regulated mechanism which converts the biased knowledge of high correlation of matching degrees into a regulation. It integrates the target item and relational items in history as a whole to characterize the matching score between the target item and historical items. Experiments conducted on three real-world datasets demonstrate that our model can significantly outperform a set of state-of-the-art models.
Suggested Citation
Weiqiang Di & ZhiHao Wu & Youfang Lin, 2022.
"TRR: Target-relation regulated network for sequential recommendation,"
PLOS ONE, Public Library of Science, vol. 17(6), pages 1-16, June.
Handle:
RePEc:plo:pone00:0269651
DOI: 10.1371/journal.pone.0269651
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0269651. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.